BIMBA
BIMBA: Selective-Scan Compression for Long-Range Video Question Answering
Md Mohaiminul Islam, Tushar Nagarajan, Huiyu Wang, Gedas Bertasius, and Lorenzo Torresani
Accepted by CVPR 2025
π Homepage | π arXiv | π» GitHub | π€ Model | π Demo
BIMBA is a multimodal large language model (MLLM) capable of efficiently processing long-range videos. Our model leverages the selective scan mechanism of Mamba to effectively select critical information from high-dimensional video and transform it into a reduced token sequence for efficient LLM processing. Extensive experiments demonstrate that BIMBA achieves state-of-the-art accuracy on multiple long-form VQA benchmarks, including PerceptionTest, NExT-QA, EgoSchema, VNBench, LongVideoBench, Video-MME, and MLVU.
Quick Start
from llava.model.builder import load_pretrained_model
from llava.mm_utils import get_model_name_from_path, process_images, tokenizer_image_token
from llava.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN, IGNORE_INDEX
from llava.conversation import conv_templates, SeparatorStyle
from PIL import Image
import requests
import copy
import torch
import sys
import warnings
from decord import VideoReader, cpu
import numpy as np
warnings.filterwarnings("ignore")
def load_video(video_path, max_frames_num,fps=1,force_sample=False):
if max_frames_num == 0:
return np.zeros((1, 336, 336, 3))
vr = VideoReader(video_path, ctx=cpu(0),num_threads=1)
total_frame_num = len(vr)
video_time = total_frame_num / vr.get_avg_fps()
fps = round(vr.get_avg_fps()/fps)
frame_idx = [i for i in range(0, len(vr), fps)]
frame_time = [i/fps for i in frame_idx]
if len(frame_idx) > max_frames_num or force_sample:
sample_fps = max_frames_num
uniform_sampled_frames = np.linspace(0, total_frame_num - 1, sample_fps, dtype=int)
frame_idx = uniform_sampled_frames.tolist()
frame_time = [i/vr.get_avg_fps() for i in frame_idx]
frame_time = ",".join([f"{i:.2f}s" for i in frame_time])
spare_frames = vr.get_batch(frame_idx).asnumpy()
return spare_frames,frame_time,video_time
model_path = "checkpoints/BIMBA-LLaVA-Qwen2-7B"
model_base = "lmms-lab/LLaVA-Video-7B-Qwen2"
model_name = "llava_qwen_lora"
device = "cuda"
device_map = "auto"
tokenizer, model, image_processor, max_length = load_pretrained_model(
model_path = model_path,
model_base = model_base,
model_name = model_name,
torch_dtype="bfloat16",
device_map=device_map,
attn_implementation=None,
)
model.eval()
video_path = "assets/example.mp4"
max_frames_num = 64
video,frame_time,video_time = load_video(video_path, max_frames_num, 1, force_sample=True)
video = image_processor.preprocess(video, return_tensors="pt")["pixel_values"].cuda().bfloat16()
video = [video]
conv_template = "qwen_1_5"
time_instruciton = f"The video lasts for {video_time:.2f} seconds, and {len(video[0])} frames are uniformly sampled from it. These frames are located at {frame_time}.Please answer the following questions related to this video."
question = DEFAULT_IMAGE_TOKEN + f"{time_instruciton}\nPlease describe this video in detail."
conv = copy.deepcopy(conv_templates[conv_template])
conv.append_message(conv.roles[0], question)
conv.append_message(conv.roles[1], None)
prompt_question = conv.get_prompt()
input_ids = tokenizer_image_token(prompt_question, tokenizer, IMAGE_TOKEN_INDEX, return_tensors="pt").unsqueeze(0).to(device)
cont = model.generate(
input_ids,
images=video,
modalities= ["video"],
do_sample=False,
temperature=0,
max_new_tokens=4096,
)
text_outputs = tokenizer.batch_decode(cont, skip_special_tokens=True)[0].strip()
print(text_outputs)
Citation
If you find BIMBA useful in your research, please use the following BibTeX entry for citation.
@article{islam2025bimba,
title={BIMBA: Selective-Scan Compression for Long-Range Video Question Answering},
author={Islam, Md Mohaiminul and Nagarajan, Tushar and Wang, Huiyu and Bertasius, Gedas and Torresani, Lorenzo},
journal={arXiv preprint arXiv:2503.09590},
year={2025}
}
- Downloads last month
- 0