File size: 3,784 Bytes
423f068
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
import torch
from datasets import load_dataset
from trl import SFTTrainer
from transformers import AutoModelForCausalLM, AutoTokenizer, TrainingArguments

"""
A simple example on using SFTTrainer and Accelerate to finetune Phi-3 models. For
a more advanced example, please follow HF alignment-handbook/scripts/run_sft.py

1. Install accelerate: 
    conda install -c conda-forge accelerate
2. Setup accelerate config:
    accelerate config
to simply use all the GPUs available:
    python -c "from accelerate.utils import write_basic_config; write_basic_config(mixed_precision='bf16')"
check accelerate config:
    accelerate env
3. Run the code:
    accelerate launch sample_finetune.py
"""

###################
# Hyper-parameters
###################
args = {
    "bf16": True,
    "do_eval": False,
    "eval_strategy": "no",
    "learning_rate": 5.0e-06,
    "log_level": "info",
    "logging_steps": 20,
    "logging_strategy": "steps",
    "lr_scheduler_type": "cosine",
    "num_train_epochs": 1,
    "max_steps": -1,
    "output_dir": "./checkpoint_dir",
    "overwrite_output_dir": True,
    "per_device_eval_batch_size": 4,
    "per_device_train_batch_size": 8,
    "remove_unused_columns": True,
    "save_steps": 100,
    "save_total_limit": 1,
    "seed": 0,
    "gradient_checkpointing": True,
    "gradient_checkpointing_kwargs":{"use_reentrant": False},
    "gradient_accumulation_steps": 1,
    "warmup_ratio": 0.2,
    }
    
training_args = TrainingArguments(**args)

################
# Modle Loading
################
checkpoint_path = "microsoft/Phi-3-mini-4k-instruct"
# checkpoint_path = "microsoft/Phi-3-mini-128k-instruct"
model_kwargs = dict(
    use_cache=False,
    trust_remote_code=True,
    attn_implementation="flash_attention_2",  # loading the model with flash-attenstion support
    torch_dtype=torch.bfloat16,
    device_map="cuda",
)
model = AutoModelForCausalLM.from_pretrained(checkpoint_path, **model_kwargs)
tokenizer = AutoTokenizer.from_pretrained(checkpoint_path)
tokenizer.pad_token = tokenizer.unk_token  # use unk rather than eos token to prevent endless generation
tokenizer.pad_token_id = tokenizer.convert_tokens_to_ids(tokenizer.pad_token)
tokenizer.padding_side = 'right'

##################
# Data Processing
##################
def apply_chat_template(
    example,
    tokenizer,
):
    messages = example["messages"]
    # Add an empty system message if there is none
    if messages[0]["role"] != "system":
        messages.insert(0, {"role": "system", "content": ""})
    example["text"] = tokenizer.apply_chat_template(
        messages, tokenize=False, add_generation_prompt=False)
    return example

raw_dataset = load_dataset("HuggingFaceH4/ultrachat_200k")
column_names = list(raw_dataset["train_sft"].features)

processed_dataset = raw_dataset.map(
    apply_chat_template,
    fn_kwargs={"tokenizer": tokenizer},
    num_proc=12,
    remove_columns=column_names,
    desc="Applying chat template",
)
train_dataset = processed_dataset["train_sft"]
eval_dataset = processed_dataset["test_sft"]

###########
# Training
###########
trainer = SFTTrainer(
    model=model,
    args=training_args,
    train_dataset=train_dataset,
    eval_dataset=eval_dataset,
    max_seq_length=2048,
    dataset_text_field="text",
    tokenizer=tokenizer,
    packing=True
)
train_result = trainer.train()
metrics = train_result.metrics
trainer.log_metrics("train", metrics)
trainer.save_metrics("train", metrics)
trainer.save_state()

#############
# Evaluation
#############
tokenizer.padding_side = 'left'
metrics = trainer.evaluate()
metrics["eval_samples"] = len(eval_dataset)
trainer.log_metrics("eval", metrics)
trainer.save_metrics("eval", metrics)

############
# Save model
############
trainer.save_model(training_args.output_dir)