wav2vec2-age-gender

This model is a fine-tuned version of audeering/wav2vec2-large-robust-6-ft-age-gender on the arrow dataset. It achieves the following results on the evaluation set:

  • Loss: 2.5537
  • Accuracy: 0.4728
  • F1 Score: 0.2652
  • Mse: 1.3505
  • Mae: 0.7527
  • Mae^m: 1.2759

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 9
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 18
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 30
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Score Mse Mae Mae^m
1.6537 0.6116 100 1.5436 0.3951 0.1176 1.8719 0.9510 1.8697
1.444 1.2232 200 1.3586 0.4142 0.2591 1.1662 0.7629 1.0623
1.4129 1.8349 300 1.4103 0.3351 0.1886 1.1853 0.8256 1.2259
1.4089 2.4465 400 1.5204 0.3188 0.1708 1.2425 0.8556 1.1245
1.3624 3.0581 500 1.4430 0.3924 0.1947 1.2507 0.7984 1.1701
1.2793 3.6697 600 1.4646 0.4060 0.3666 1.3678 0.8174 0.8894
1.0964 4.2813 700 1.5239 0.4441 0.2978 1.1090 0.7275 0.9776
1.1362 4.8930 800 1.6786 0.4496 0.3366 1.2561 0.7548 0.8756
0.9191 5.5046 900 1.5732 0.4441 0.3106 1.0845 0.7139 0.8963
0.6949 6.1162 1000 1.8249 0.4469 0.2538 1.1008 0.7139 1.0736
0.8272 6.7278 1100 1.8225 0.4550 0.3115 1.0599 0.6948 1.0455
0.7242 7.3394 1200 2.1688 0.3951 0.2593 1.0599 0.7493 1.0673
0.7385 7.9511 1300 2.3316 0.4114 0.2894 1.2234 0.7711 1.0547
0.6214 8.5627 1400 2.2313 0.4768 0.2632 0.9455 0.6567 1.0143
0.3996 9.1743 1500 2.3696 0.4714 0.2979 1.0763 0.6948 1.0522
0.467 9.7859 1600 2.4082 0.4005 0.2902 1.1144 0.7493 0.8743
0.3559 10.3976 1700 2.9747 0.4632 0.3154 1.1281 0.7084 1.1496
0.5321 11.0092 1800 2.8344 0.4578 0.3201 0.9973 0.6812 0.9616
0.3078 11.6208 1900 3.0384 0.4251 0.3050 1.0981 0.7330 1.0609
0.216 12.2324 2000 3.1374 0.4578 0.3000 0.9564 0.6676 0.9610
0.3241 12.8440 2100 3.6605 0.4142 0.2530 1.0245 0.7193 1.1348
0.2642 13.4557 2200 3.4759 0.4278 0.3076 1.0354 0.7139 0.9519
0.1692 14.0673 2300 3.9204 0.4223 0.2506 1.0763 0.7275 1.1008
0.1729 14.6789 2400 3.8804 0.4578 0.3171 1.0545 0.6948 1.0291
0.2636 15.2905 2500 4.1746 0.4523 0.3043 1.0845 0.7084 0.9463
0.1523 15.9021 2600 4.1583 0.4169 0.2919 1.1144 0.7384 0.9452
0.101 16.5138 2700 4.2574 0.4496 0.2650 0.9837 0.6839 1.0895
0.1593 17.1254 2800 4.3649 0.4387 0.2716 1.1253 0.7275 1.1297
0.0707 17.7370 2900 4.6972 0.4060 0.2930 1.1907 0.7657 1.0690
0.1647 18.3486 3000 4.9096 0.4360 0.2576 1.0518 0.7139 1.0402
0.2 18.9602 3100 4.9426 0.4142 0.2755 1.0409 0.7248 1.0775
0.0381 19.5719 3200 4.7156 0.4441 0.2706 1.0136 0.6975 0.9823
0.1236 20.1835 3300 5.1736 0.4305 0.2666 1.0136 0.7084 0.9442
0.0415 20.7951 3400 5.2558 0.4305 0.2625 1.0681 0.7248 0.9997
0.0307 21.4067 3500 5.4287 0.3924 0.2482 1.1635 0.7711 1.0877
0.0079 22.0183 3600 5.3503 0.4169 0.2505 1.1035 0.7439 1.0535
0.0588 22.6300 3700 5.4146 0.4060 0.2740 1.1172 0.7520 0.9442
0.1119 23.2416 3800 5.5098 0.4278 0.2842 1.0899 0.7248 1.0109
0.0135 23.8532 3900 6.0306 0.4196 0.2634 1.0381 0.7221 1.0756
0.0457 24.4648 4000 5.8127 0.4469 0.2854 1.0327 0.7003 1.1027
0.1018 25.0765 4100 5.6878 0.4469 0.2939 1.1117 0.7193 1.0586
0.0082 25.6881 4200 5.6874 0.4332 0.2795 1.1090 0.7330 1.0770
0.0308 26.2997 4300 5.8580 0.4305 0.2743 1.0899 0.7302 1.0835
0.0081 26.9113 4400 6.2890 0.4332 0.2487 1.0599 0.7221 1.1730
0.0185 27.5229 4500 6.1682 0.4441 0.2758 1.0463 0.7084 1.0905
0.016 28.1346 4600 6.0424 0.4414 0.2930 1.0954 0.7248 1.1141
0.0156 28.7462 4700 6.1145 0.4414 0.2847 1.0926 0.7221 1.1320
0.0035 29.3578 4800 6.0960 0.4441 0.2912 1.1035 0.7221 1.1203

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.1+cu121
  • Datasets 3.0.0
  • Tokenizers 0.19.1
Downloads last month
56
Safetensors
Model size
89.8M params
Tensor type
F32
·
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for mlmarian/wav2vec2-age-gender

Finetuned
(3)
this model