twitter-sentiment-analysis-v2
This model is a fine-tuned version of distilbert-base-uncased on the twitter-sentiment-analysis dataset. It achieves the following results on the evaluation set:
- Loss: 0.3771
- Accuracy: 0.8367
- F1: 0.8367
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: reduce_lr_on_plateau
- lr_scheduler_warmup_steps: 500
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
---|---|---|---|---|---|
0.3957 | 0.13 | 1000 | 0.4273 | 0.8075 | 0.8005 |
0.4086 | 0.27 | 2000 | 0.4081 | 0.8211 | 0.8139 |
0.4085 | 0.4 | 3000 | 0.3971 | 0.8274 | 0.8237 |
0.3936 | 0.53 | 4000 | 0.3857 | 0.8304 | 0.8307 |
0.3783 | 0.67 | 5000 | 0.3978 | 0.8317 | 0.8300 |
0.3858 | 0.8 | 6000 | 0.3887 | 0.8281 | 0.8182 |
0.3779 | 0.93 | 7000 | 0.3771 | 0.8367 | 0.8367 |
0.2971 | 1.07 | 8000 | 0.4023 | 0.8352 | 0.8310 |
0.2994 | 1.2 | 9000 | 0.3865 | 0.8326 | 0.8342 |
0.293 | 1.33 | 10000 | 0.4454 | 0.8299 | 0.8197 |
0.3053 | 1.47 | 11000 | 0.3929 | 0.8364 | 0.8349 |
0.3125 | 1.6 | 12000 | 0.4141 | 0.8366 | 0.8314 |
Framework versions
- Transformers 4.38.2
- Pytorch 2.1.0+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2
- Downloads last month
- 99
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for mliamsinclair/twitter-sentiment-analysis-v2
Base model
distilbert/distilbert-base-uncasedEvaluation results
- Accuracy on twitter-sentiment-analysistest set self-reported0.837
- F1 on twitter-sentiment-analysistest set self-reported0.837