File size: 2,072 Bytes
a4f09c9 9835273 0ba2642 080f5a6 ddeb4a9 080f5a6 9835273 080f5a6 0ba2642 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 |
---
license: apache-2.0
---
# A Touch, Vision, and Language Dataset for Multimodal Alignment
by <a href="https://max-fu.github.io">Max (Letian) Fu</a>, <a href="https://www.linkedin.com/in/gaurav-datta/">Gaurav Datta*</a>, <a href="https://qingh097.github.io/">Huang Huang*</a>, <a href="https://autolab.berkeley.edu/people">William Chung-Ho Panitch*</a>, <a href="https://www.linkedin.com/in/jaimyn-drake/">Jaimyn Drake*</a>, <a href="https://joeaortiz.github.io/">Joseph Ortiz</a>, <a href="https://www.mustafamukadam.com/">Mustafa Mukadam</a>, <a href="https://scholar.google.com/citations?user=p6DCMrQAAAAJ&hl=en">Mike Lambeta</a>, <a href="https://lasr.org/">Roberto Calandra</a>, <a href="https://goldberg.berkeley.edu">Ken Goldberg</a> at UC Berkeley, Meta AI, TU Dresden, and CeTI (*equal contribution).
[[Paper](#todo)] | [[Project Page](https://tactile-vlm.github.io/)] | [[Citation](#citation)]
<p align="center">
<img src="img/splash_figure_alt.png" width="800">
</p>
This repo contains the official checkpoints for *A Touch, Vision, and Language Dataset for Multimodal Alignment*.
The tactile encoders comes in three different sizes: ViT-Tiny, ViT-Small, and ViT-Base, all of which are stored in
```bash
ckpt/tvl_enc
```
TVL-LLaMA, the generative counterparts, are stored in
```bash
ckpt/tvl_llama
```
## Inference
For zero-shot classification, we would require [OpenCLIP](https://github.com/mlfoundations/open_clip) with the following configuration:
```bash
CLIP_VISION_MODEL = "ViT-L-14"
CLIP_PRETRAIN_DATA = "datacomp_xl_s13b_b90k"
```
For TVL-LLaMA, please request access to the pre-trained LLaMA-2 from this [form](https://llama.meta.com/llama-downloads/). In particular, we use `llama-2-7b` as the base model. The weights here contains the trained [adapter](https://arxiv.org/abs/2309.03905), the tactile encoder, and the vision encoder for the ease of loading.
For the complete info, please take a look at the [GitHub repo](https://tactile-vlm.github.io/) to see instructions on pretraining, fine-tuning, and evaluation with these models.
|