File size: 1,751 Bytes
9b62f11 5cca166 9b62f11 5cca166 9b62f11 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 |
---
library_name: transformers
license: apache-2.0
base_model: mistralai/Mistral-7B-v0.1
tags:
- llama-factory
- full
- generated_from_trainer
model-index:
- name: orca-agentinstruct-1M-v1-cleaned_mistral
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# orca-agentinstruct-1M-v1-cleaned_mistral
This model is a fine-tuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) on the mlabonne/orca-agentinstruct-1M-v1-cleaned dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4467
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 32
- gradient_accumulation_steps: 2
- total_train_batch_size: 512
- total_eval_batch_size: 256
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- lr_scheduler_warmup_ratio: 0.1
- lr_scheduler_warmup_steps: 1738
- num_epochs: 3.0
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 0.417 | 0.9995 | 1035 | 0.4187 |
| 0.3265 | 2.0 | 2071 | 0.4137 |
| 0.2217 | 2.9986 | 3105 | 0.4467 |
### Framework versions
- Transformers 4.45.2
- Pytorch 2.3.0
- Datasets 2.21.0
- Tokenizers 0.20.3
|