File size: 1,751 Bytes
9b62f11
 
 
 
 
 
5cca166
9b62f11
 
 
 
 
 
 
 
 
 
 
5cca166
9b62f11
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
---
library_name: transformers
license: apache-2.0
base_model: mistralai/Mistral-7B-v0.1
tags:
- llama-factory
- full
- generated_from_trainer
model-index:
- name: orca-agentinstruct-1M-v1-cleaned_mistral
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# orca-agentinstruct-1M-v1-cleaned_mistral

This model is a fine-tuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) on the mlabonne/orca-agentinstruct-1M-v1-cleaned dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4467

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 32
- gradient_accumulation_steps: 2
- total_train_batch_size: 512
- total_eval_batch_size: 256
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- lr_scheduler_warmup_ratio: 0.1
- lr_scheduler_warmup_steps: 1738
- num_epochs: 3.0

### Training results

| Training Loss | Epoch  | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 0.417         | 0.9995 | 1035 | 0.4187          |
| 0.3265        | 2.0    | 2071 | 0.4137          |
| 0.2217        | 2.9986 | 3105 | 0.4467          |


### Framework versions

- Transformers 4.45.2
- Pytorch 2.3.0
- Datasets 2.21.0
- Tokenizers 0.20.3