File size: 1,777 Bytes
90d31b4
 
 
 
 
 
bc50d66
90d31b4
 
 
 
 
 
 
 
 
 
 
bc50d66
90d31b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
---
library_name: transformers
license: apache-2.0
base_model: mistralai/Mistral-7B-v0.3
tags:
- llama-factory
- full
- generated_from_trainer
model-index:
- name: mistral_7b_0-3_oh-dcft-v3.1-gemini-1.5-pro
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# mistral_7b_0-3_oh-dcft-v3.1-gemini-1.5-pro

This model is a fine-tuned version of [mistralai/Mistral-7B-v0.3](https://huggingface.co/mistralai/Mistral-7B-v0.3) on the mlfoundations-dev/oh-dcft-v3.1-gemini-1.5-pro dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5542

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 32
- total_train_batch_size: 512
- total_eval_batch_size: 256
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine_with_min_lr
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 3.0

### Training results

| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 0.5352        | 1.0   | 517  | 0.5340          |
| 0.4267        | 2.0   | 1034 | 0.5261          |
| 0.3308        | 3.0   | 1551 | 0.5542          |


### Framework versions

- Transformers 4.46.1
- Pytorch 2.4.0
- Datasets 3.0.2
- Tokenizers 0.20.3