File size: 1,903 Bytes
995146a 4608c32 995146a 4608c32 995146a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 |
---
library_name: transformers
license: apache-2.0
base_model: mistralai/Mistral-7B-v0.1
tags:
- llama-factory
- full
- generated_from_trainer
model-index:
- name: hp_ablations_grid_mistral_bsz4096_lr5e-6_scheduler-cosine-warmup0.05-minlr5e-7
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# hp_ablations_grid_mistral_bsz4096_lr5e-6_scheduler-cosine-warmup0.05-minlr5e-7
This model is a fine-tuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) on the mlfoundations-dev/oh-dcft-v3-llama3.1-nemotron-70b_shareGPT_format dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0594
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 64
- gradient_accumulation_steps: 8
- total_train_batch_size: 4096
- total_eval_batch_size: 512
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine_with_min_lr
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 3.0
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 0.518 | 1.0 | 84 | 0.0644 |
| 0.4614 | 2.0 | 168 | 0.0604 |
| 0.426 | 3.0 | 252 | 0.0594 |
### Framework versions
- Transformers 4.46.1
- Pytorch 2.3.0
- Datasets 3.1.0
- Tokenizers 0.20.3
|