File size: 1,292 Bytes
86aa0ca 6fed64b 86aa0ca de70fc0 86aa0ca de70fc0 86aa0ca de70fc0 86aa0ca de70fc0 86aa0ca de70fc0 86aa0ca de70fc0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 |
---
license: apache-2.0
datasets:
- mlabonne/mini-platypus
pipeline_tag: text-generation
---
# 🦙🧠 Miniplatypus-7b
<center><img src="https://i.imgur.com/VkGvQym.png" width="300"></center>
This is a `Llama-2-7b-chat` model fine-tuned using QLoRA (4-bit precision) on the [`mlabonne/guanaco-llama2-1k`](https://huggingface.co/datasets/mlabonne/mini-platypus) dataset, which is a subset of the [`garage-bAInd/Open-Platypus`](https://huggingface.co/datasets/garage-bAInd/Open-Platypus).
## 🔧 Training
It was trained on a Google Colab notebook with a T4 GPU. It is mainly designed for educational purposes, not for inference.
## 💻 Usage
``` python
# pip install transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "mlabonne/llama-2-7b-miniplatypus"
prompt = "What is a large language model?"
tokenizer = AutoTokenizer.from_pretrained(model)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
sequences = pipeline(
f'<s>[INST] {prompt} [/INST]',
do_sample=True,
top_k=10,
num_return_sequences=1,
eos_token_id=tokenizer.eos_token_id,
max_length=200,
)
for seq in sequences:
print(f"Result: {seq['generated_text']}")
``` |