File size: 6,696 Bytes
d8f0911 2ab6f57 d8f0911 2ab6f57 d8f0911 243a64b 2ab6f57 2b7bf6b 2ab6f57 2b7bf6b 1097f34 2ab6f57 0057f29 2ab6f57 b3a81de 2ab6f57 243a64b d5cf92b bec88f4 d5cf92b 2ab6f57 bec88f4 cd24354 2ab6f57 d8f0911 deab9fa d8f0911 2ab6f57 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 |
---
license: cc-by-nc-4.0
tags:
- moe
- frankenmoe
- merge
- mergekit
- lazymergekit
base_model:
- mlabonne/AlphaMonarch-7B
- beowolx/CodeNinja-1.0-OpenChat-7B
- SanjiWatsuki/Kunoichi-DPO-v2-7B
- mlabonne/NeuralDaredevil-7B
---
![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/61b8e2ba285851687028d395/9XVgxKyuXTQVO5mO-EOd4.jpeg)
# ๐ฎ Beyonder-4x7B-v3
Beyonder-4x7B-v3 is an improvement over the popular [Beyonder-4x7B-v2](https://huggingface.co/mlabonne/Beyonder-4x7B-v2). It's a Mixture of Experts (MoE) made with the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing):
* [mlabonne/AlphaMonarch-7B](https://huggingface.co/mlabonne/AlphaMonarch-7B)
* [beowolx/CodeNinja-1.0-OpenChat-7B](https://huggingface.co/beowolx/CodeNinja-1.0-OpenChat-7B)
* [SanjiWatsuki/Kunoichi-DPO-v2-7B](https://huggingface.co/SanjiWatsuki/Kunoichi-DPO-v2-7B)
* [mlabonne/NeuralDaredevil-7B](https://huggingface.co/mlabonne/NeuralDaredevil-7B)
Special thanks to [beowolx](https://huggingface.co/beowolx) for making the best Mistral-based code model and to [SanjiWatsuki](https://huggingface.co/SanjiWatsuki) for creating one of the very best RP models.
## ๐ Applications
This model uses a context window of 8k. I recommend using it with the Mistral Instruct chat template (works perfectly with LM Studio).
If you use SillyTavern, you might want to tweak the inference parameters. Here's what LM Studio uses as a reference: `temp` 0.8, `top_k` 40, `top_p` 0.95, `min_p` 0.05, `repeat_penalty` 1.1.
Thanks to its four experts, it's a well-rounded model, capable of achieving most tasks. As two experts are always used to generate an answer, every task benefits from other capabilities, like chat with RP, or math with code.
## โก Quantized models
Thanks [bartowski](https://huggingface.co/bartowski) for quantizing this model.
* **GGUF**: https://huggingface.co/mlabonne/Beyonder-4x7B-v3-GGUF
* **More GGUF**: https://huggingface.co/bartowski/Beyonder-4x7B-v3-GGUF
* **ExLlamaV2**: https://huggingface.co/bartowski/Beyonder-4x7B-v3-exl2
## ๐ Evaluation
This model is not designed to excel in traditional benchmarks, as the code and role-playing models generally do not apply to those contexts. Nonetheless, it performs remarkably well thanks to strong general-purpose experts.
### Nous
Beyonder-4x7B-v3 is one of the best models on Nous' benchmark suite (evaluation performed using [LLM AutoEval](https://github.com/mlabonne/llm-autoeval)) and significantly outperforms the v2. See the entire leaderboard [here](https://huggingface.co/spaces/mlabonne/Yet_Another_LLM_Leaderboard).
| Model | Average | AGIEval | GPT4All | TruthfulQA | Bigbench |
|---|---:|---:|---:|---:|---:|
| [mlabonne/AlphaMonarch-7B](https://huggingface.co/mlabonne/AlphaMonarch-7B) [๐](https://gist.github.com/mlabonne/1d33c86824b3a11d2308e36db1ba41c1) | 62.74 | 45.37 | 77.01 | 78.39 | 50.2 |
| [**mlabonne/Beyonder-4x7B-v3**](https://huggingface.co/mlabonne/Beyonder-4x7B-v3) [๐](https://gist.github.com/mlabonne/3740020807e559f7057c32e85ce42d92) | **61.91** | **45.85** | **76.67** | **74.98** | **50.12** |
| [mlabonne/NeuralDaredevil-7B](https://huggingface.co/mlabonne/NeuralDaredevil-7B) [๐](https://gist.github.com/mlabonne/cbeb077d1df71cb81c78f742f19f4155) | 59.39 | 45.23 | 76.2 | 67.61 | 48.52 |
| [SanjiWatsuki/Kunoichi-DPO-v2-7B](https://huggingface.co/SanjiWatsuki/Kunoichi-DPO-v2-7B) [๐](https://gist.github.com/mlabonne/895ff5171e998abfdf2a41a4f9c84450) | 58.29 | 44.79 | 75.05 | 65.68 | 47.65 |
| [mlabonne/Beyonder-4x7B-v2](https://huggingface.co/mlabonne/Beyonder-4x7B-v2) [๐](https://gist.github.com/mlabonne/f73baa140a510a676242f8a4496d05ca) | 57.13 | 45.29 | 75.95 | 60.86 | 46.4 |
| [beowolx/CodeNinja-1.0-OpenChat-7B](https://huggingface.co/beowolx/CodeNinja-1.0-OpenChat-7B) [๐](https://gist.github.com/mlabonne/08b5280c221fbd7f98eb27561ae902a3) | 50.35 | 39.98 | 71.77 | 48.73 | 40.92 |
### EQ-Bench
Beyonder-4x7B-v3 is the best 4x7B model on the EQ-Bench leaderboard, outperforming older versions of ChatGPT and Llama-2-70b-chat. It is very close to Mixtral-8x7B-Instruct-v0.1 and Gemini Pro. Thanks [Sam Paech](https://huggingface.co/sam-paech) for running the eval.
![image/png](https://cdn-uploads.huggingface.co/production/uploads/61b8e2ba285851687028d395/-OSHe2ImrxN8wAREnSZAZ.png)
### Open LLM Leaderboard
It's also a strong performer on the Open LLM Leaderboard, significantly outperforming the v2 model.
![image/png](https://cdn-uploads.huggingface.co/production/uploads/61b8e2ba285851687028d395/NFRYqzwuy9TB-s-Hy3gRy.png)
## ๐งฉ Configuration
```yaml
base_model: mlabonne/AlphaMonarch-7B
experts:
- source_model: mlabonne/AlphaMonarch-7B
positive_prompts:
- "chat"
- "assistant"
- "tell me"
- "explain"
- "I want"
- source_model: beowolx/CodeNinja-1.0-OpenChat-7B
positive_prompts:
- "code"
- "python"
- "javascript"
- "programming"
- "algorithm"
- source_model: SanjiWatsuki/Kunoichi-DPO-v2-7B
positive_prompts:
- "storywriting"
- "write"
- "scene"
- "story"
- "character"
- source_model: mlabonne/NeuralDaredevil-7B
positive_prompts:
- "reason"
- "math"
- "mathematics"
- "solve"
- "count"
```
## ๐ณ Model Family Tree
![image/png](https://cdn-uploads.huggingface.co/production/uploads/61b8e2ba285851687028d395/zQi5VgmdqJv6pFaGoQ2AL.png)
## ๐ป Usage
```python
!pip install -qU transformers bitsandbytes accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "mlabonne/Beyonder-4x7B-v3"
tokenizer = AutoTokenizer.from_pretrained(model)
pipeline = transformers.pipeline(
"text-generation",
model=model,
model_kwargs={"torch_dtype": torch.float16, "load_in_4bit": True},
)
messages = [{"role": "user", "content": "Explain what a Mixture of Experts is in less than 100 words."}]
prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
```
Output:
> A Mixture of Experts (MoE) is a neural network architecture that tackles complex tasks by dividing them into simpler subtasks, delegating each to specialized expert modules. These experts learn to independently handle specific problem aspects. The MoE structure combines their outputs, leveraging their expertise for improved overall performance. This approach promotes modularity, adaptability, and scalability, allowing for better generalization in various applications. |