Create model card
#1
by
NoThankYou1
- opened
README.md
ADDED
@@ -0,0 +1,131 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: cc-by-nc-4.0
|
3 |
+
language:
|
4 |
+
- en
|
5 |
+
tags:
|
6 |
+
- merge
|
7 |
+
- lazymergekit
|
8 |
+
- gguf
|
9 |
+
- rlhf
|
10 |
+
- dpo
|
11 |
+
---
|
12 |
+
|
13 |
+
![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/61b8e2ba285851687028d395/TI7C8F2gk43gmI9U2L0uk.jpeg)
|
14 |
+
|
15 |
+
# π AlphaMonarch-7B
|
16 |
+
|
17 |
+
**tl;dr: AlphaMonarch-7B is a new DPO merge that retains all the reasoning abilities of the very best merges and significantly improves its conversational abilities. Kind of the best of both worlds in a 7B model. π**
|
18 |
+
|
19 |
+
AlphaMonarch-7B is a DPO fine-tuned of [mlabonne/NeuralMonarch-7B](https://huggingface.co/mlabonne/NeuralMonarch-7B/) using the [argilla/OpenHermes2.5-dpo-binarized-alpha](https://huggingface.co/datasets/argilla/OpenHermes2.5-dpo-binarized-alpha) preference dataset.
|
20 |
+
|
21 |
+
It is based on a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing):
|
22 |
+
* [mlabonne/OmniTruthyBeagle-7B-v0](https://huggingface.co/mlabonne/OmniTruthyBeagle-7B-v0)
|
23 |
+
* [mlabonne/NeuBeagle-7B](https://huggingface.co/mlabonne/NeuBeagle-7B)
|
24 |
+
* [mlabonne/NeuralOmniBeagle-7B](https://huggingface.co/mlabonne/NeuralOmniBeagle-7B)
|
25 |
+
|
26 |
+
Special thanks to [Jon Durbin](https://huggingface.co/jondurbin), [Intel](https://huggingface.co/Intel), [Argilla](https://huggingface.co/argilla), and [Teknium](https://huggingface.co/teknium) for the preference datasets.
|
27 |
+
|
28 |
+
**Try the demo**: https://huggingface.co/spaces/mlabonne/AlphaMonarch-7B-GGUF-Chat
|
29 |
+
|
30 |
+
## π Applications
|
31 |
+
|
32 |
+
This model uses a context window of 8k. I recommend using it with the Mistral Instruct chat template (works perfectly with LM Studio).
|
33 |
+
|
34 |
+
It is one of the very best 7B models in terms of instructing following and reasoning abilities and can be used for conversations, RP, and storytelling. Note that it tends to have a quite formal and sophisticated style, but it can be changed by modifying the prompt.
|
35 |
+
|
36 |
+
## β‘ Quantized models
|
37 |
+
|
38 |
+
* **GGUF**: https://huggingface.co/mlabonne/AlphaMonarch-7B-GGUF
|
39 |
+
|
40 |
+
## π Evaluation
|
41 |
+
|
42 |
+
### Nous
|
43 |
+
|
44 |
+
AlphaMonarch-7B is the best-performing 7B model on Nous' benchmark suite (evaluation performed using [LLM AutoEval](https://github.com/mlabonne/llm-autoeval)). See the entire leaderboard [here](https://huggingface.co/spaces/mlabonne/Yet_Another_LLM_Leaderboard).
|
45 |
+
|
46 |
+
| Model | Average | AGIEval | GPT4All | TruthfulQA | Bigbench |
|
47 |
+
|---|---:|---:|---:|---:|---:|
|
48 |
+
| [**AlphaMonarch-7B**](https://huggingface.co/mlabonne/AlphaMonarch-7B) [π](https://gist.github.com/mlabonne/1d33c86824b3a11d2308e36db1ba41c1) | **62.74** | **45.37** | **77.01** | **78.39** | **50.2** |
|
49 |
+
| [NeuralMonarch-7B](https://huggingface.co/mlabonne/NeuralMonarch-7B) [π](https://gist.github.com/mlabonne/64050c96c6aa261a8f5b403190c8dee4) | 62.73 | 45.31 | 76.99 | 78.35 | 50.28 |
|
50 |
+
| [Monarch-7B](https://huggingface.co/mlabonne/Monarch-7B) [π](https://gist.github.com/mlabonne/0b8d057c5ece41e0290580a108c7a093) | 62.68 | 45.48 | 77.07 | 78.04 | 50.14 |
|
51 |
+
| [teknium/OpenHermes-2.5-Mistral-7B](https://huggingface.co/teknium/OpenHermes-2.5-Mistral-7B) [π](https://gist.github.com/mlabonne/88b21dd9698ffed75d6163ebdc2f6cc8) | 52.42 | 42.75 | 72.99 | 52.99 | 40.94 |
|
52 |
+
| [mlabonne/NeuralHermes-2.5-Mistral-7B](https://huggingface.co/mlabonne/NeuralHermes-2.5-Mistral-7B) [π](https://gist.github.com/mlabonne/14687f1eb3425b166db511f31f8e66f6) | 53.51 | 43.67 | 73.24 | 55.37 | 41.76 |
|
53 |
+
| [mlabonne/NeuralBeagle14-7B](https://huggingface.co/mlabonne/NeuralBeagle14-7B) [π](https://gist.github.com/mlabonne/ad0c665bbe581c8420136c3b52b3c15c) | 60.25 | 46.06 | 76.77 | 70.32 | 47.86 |
|
54 |
+
| [mlabonne/NeuralOmniBeagle-7B](https://huggingface.co/mlabonne/NeuralOmniBeagle-7B) [π](https://gist.github.com/mlabonne/0e49d591787185fa5ae92ca5d9d4a1fd) | 62.3 | 45.85 | 77.26 | 76.06 | 50.03 |
|
55 |
+
| [eren23/dpo-binarized-NeuralTrix-7B](https://huggingface.co/eren23/dpo-binarized-NeuralTrix-7B) [π](https://gist.github.com/CultriX-Github/dbdde67ead233df0c7c56f1b091f728c) | 62.5 | 44.57 | 76.34 | 79.81 | 49.27 |
|
56 |
+
| [CultriX/NeuralTrix-7B-dpo](https://huggingface.co/CultriX/NeuralTrix-7B-dpo) [π](https://gist.github.com/CultriX-Github/df0502599867d4043b45d9dafb5976e8) | 62.5 | 44.61 | 76.33 | 79.8 | 49.24 |
|
57 |
+
|
58 |
+
### EQ-bench
|
59 |
+
|
60 |
+
AlphaMonarch-7B is also outperforming 70B and 120B parameter models on [EQ-bench](https://eqbench.com/) by [Samuel J. Paech](https://twitter.com/sam_paech), who kindly ran the evaluations.
|
61 |
+
|
62 |
+
![image/png](https://cdn-uploads.huggingface.co/production/uploads/61b8e2ba285851687028d395/dnCFxieqLiAC3Ll6CfdZW.png)
|
63 |
+
|
64 |
+
### MT-Bench
|
65 |
+
|
66 |
+
```
|
67 |
+
########## First turn ##########
|
68 |
+
score
|
69 |
+
model turn
|
70 |
+
gpt-4 1 8.95625
|
71 |
+
OmniBeagle-7B 1 8.31250
|
72 |
+
AlphaMonarch-7B 1 8.23750
|
73 |
+
claude-v1 1 8.15000
|
74 |
+
NeuralMonarch-7B 1 8.09375
|
75 |
+
gpt-3.5-turbo 1 8.07500
|
76 |
+
claude-instant-v1 1 7.80000
|
77 |
+
|
78 |
+
########## Second turn ##########
|
79 |
+
score
|
80 |
+
model turn
|
81 |
+
gpt-4 2 9.025000
|
82 |
+
claude-instant-v1 2 8.012658
|
83 |
+
OmniBeagle-7B 2 7.837500
|
84 |
+
gpt-3.5-turbo 2 7.812500
|
85 |
+
claude-v1 2 7.650000
|
86 |
+
AlphaMonarch-7B 2 7.618750
|
87 |
+
NeuralMonarch-7B 2 7.375000
|
88 |
+
|
89 |
+
########## Average ##########
|
90 |
+
score
|
91 |
+
model
|
92 |
+
gpt-4 8.990625
|
93 |
+
OmniBeagle-7B 8.075000
|
94 |
+
gpt-3.5-turbo 7.943750
|
95 |
+
AlphaMonarch-7B 7.928125
|
96 |
+
claude-instant-v1 7.905660
|
97 |
+
claude-v1 7.900000
|
98 |
+
NeuralMonarch-7B 7.734375
|
99 |
+
NeuralBeagle14-7B 7.628125
|
100 |
+
```
|
101 |
+
|
102 |
+
### Open LLM Leaderboard
|
103 |
+
|
104 |
+
AlphaMonarch-7B is one of the best-performing non-merge 7B models on the Open LLM Leaderboard:
|
105 |
+
|
106 |
+
![image/png](https://cdn-uploads.huggingface.co/production/uploads/61b8e2ba285851687028d395/njHxX_ERQaBssHqp17fMy.png)
|
107 |
+
|
108 |
+
## π» Usage
|
109 |
+
|
110 |
+
```python
|
111 |
+
!pip install -qU transformers accelerate
|
112 |
+
|
113 |
+
from transformers import AutoTokenizer
|
114 |
+
import transformers
|
115 |
+
import torch
|
116 |
+
|
117 |
+
model = "mlabonne/AlphaMonarch-7B"
|
118 |
+
messages = [{"role": "user", "content": "What is a large language model?"}]
|
119 |
+
|
120 |
+
tokenizer = AutoTokenizer.from_pretrained(model)
|
121 |
+
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
122 |
+
pipeline = transformers.pipeline(
|
123 |
+
"text-generation",
|
124 |
+
model=model,
|
125 |
+
torch_dtype=torch.float16,
|
126 |
+
device_map="auto",
|
127 |
+
)
|
128 |
+
|
129 |
+
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
|
130 |
+
print(outputs[0]["generated_text"])
|
131 |
+
```
|