File size: 11,043 Bytes
be2aa80 c3487d1 be2aa80 2ec5a90 be2aa80 3f5e454 be2aa80 2ec5a90 4dd1f60 2ec5a90 be2aa80 2ec5a90 be2aa80 2ec5a90 be2aa80 2ec5a90 be2aa80 2ec5a90 be2aa80 3f5e454 be2aa80 b489109 be2aa80 a40e3bd be2aa80 a40e3bd 2ec5a90 be2aa80 5032a92 be2aa80 2ec5a90 be2aa80 5032a92 be2aa80 2ec5a90 be2aa80 2ec5a90 be2aa80 2ec5a90 be2aa80 2ec5a90 be2aa80 2ec5a90 be2aa80 2ec5a90 be2aa80 2ec5a90 be2aa80 2ec5a90 be2aa80 2ec5a90 be2aa80 2ec5a90 be2aa80 2ec5a90 be2aa80 4dd1f60 be2aa80 5032a92 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 |
---
language: en
license: mit
tags:
- keyphrase-extraction
datasets:
- midas/openkp
metrics:
- seqeval
widget:
- text: "Keyphrase extraction is a technique in text analysis where you extract the important keyphrases from a document.
Thanks to these keyphrases humans can understand the content of a text very quickly and easily without reading
it completely. Keyphrase extraction was first done primarily by human annotators, who read the text in detail
and then wrote down the most important keyphrases. The disadvantage is that if you work with a lot of documents,
this process can take a lot of time.
Here is where Artificial Intelligence comes in. Currently, classical machine learning methods, that use statistical
and linguistic features, are widely used for the extraction process. Now with deep learning, it is possible to capture
the semantic meaning of a text even better than these classical methods. Classical methods look at the frequency,
occurrence and order of words in the text, whereas these neural approaches can capture long-term semantic dependencies
and context of words in a text."
example_title: "Example 1"
- text: "FoodEx is the largest trade exhibition for food and drinks in Asia, with about 70,000 visitors checking out the products presented by hundreds of participating companies. I was lucky to enter as press; otherwise, visitors must be affiliated with the food industry— and pay ¥5,000 — to enter. The FoodEx menu is global, including everything from cherry beer from Germany and premium Mexican tequila to top-class French and Chinese dumplings. The event was a rare chance to try out both well-known and exotic foods and even see professionals making them. In addition to booths offering traditional Japanese favorites such as udon and maguro sashimi, there were plenty of innovative twists, such as dorayaki , a sweet snack made of two pancakes and a red-bean filling, that came in coffee and tomato flavors. While I was there I was lucky to catch the World Sushi Cup Japan 2013, where top chefs from around the world were competing … and presenting a wide range of styles that you would not normally see in Japan, like the flower makizushi above."
example_title: "Example 2"
model-index:
- name: DeDeckerThomas/keyphrase-extraction-distilbert-openkp
results:
- task:
type: keyphrase-extraction
name: Keyphrase Extraction
dataset:
type: midas/openkp
name: openkp
metrics:
- type: F1 (Seqeval)
value: 0.430
name: F1 (Seqeval)
- type: F1@M
value: 0.314
name: F1@M
---
# 🔑 Keyphrase Extraction Model: distilbert-openkp
Keyphrase extraction is a technique in text analysis where you extract the important keyphrases from a document. Thanks to these keyphrases humans can understand the content of a text very quickly and easily without reading it completely. Keyphrase extraction was first done primarily by human annotators, who read the text in detail and then wrote down the most important keyphrases. The disadvantage is that if you work with a lot of documents, this process can take a lot of time ⏳.
Here is where Artificial Intelligence 🤖 comes in. Currently, classical machine learning methods, that use statistical and linguistic features, are widely used for the extraction process. Now with deep learning, it is possible to capture the semantic meaning of a text even better than these classical methods. Classical methods look at the frequency, occurrence and order of words in the text, whereas these neural approaches can capture long-term semantic dependencies and context of words in a text.
## 📓 Model Description
This model uses [KBIR](https://huggingface.co/distilbert-base-uncased) as its base model and fine-tunes it on the [OpenKP dataset](https://huggingface.co/datasets/midas/openkp).
Keyphrase extraction models are transformer models fine-tuned as a token classification problem where each word in the document is classified as being part of a keyphrase or not.
| Label | Description |
| ----- | ------------------------------- |
| B-KEY | At the beginning of a keyphrase |
| I-KEY | Inside a keyphrase |
| O | Outside a keyphrase |
## ✋ Intended Uses & Limitations
### 🛑 Limitations
* Limited amount of predicted keyphrases.
* Only works for English documents.
### ❓ How To Use
```python
from transformers import (
TokenClassificationPipeline,
AutoModelForTokenClassification,
AutoTokenizer,
)
from transformers.pipelines import AggregationStrategy
import numpy as np
# Define keyphrase extraction pipeline
class KeyphraseExtractionPipeline(TokenClassificationPipeline):
def __init__(self, model, *args, **kwargs):
super().__init__(
model=AutoModelForTokenClassification.from_pretrained(model),
tokenizer=AutoTokenizer.from_pretrained(model),
*args,
**kwargs
)
def postprocess(self, all_outputs):
results = super().postprocess(
all_outputs=all_outputs,
aggregation_strategy=AggregationStrategy.FIRST,
)
return np.unique([result.get("word").strip() for result in results])
```
```python
# Load pipeline
model_name = "ml6team/keyphrase-extraction-distilbert-openkp"
extractor = KeyphraseExtractionPipeline(model=model_name)
```
```python
# Inference
text = """
Keyphrase extraction is a technique in text analysis where you extract the
important keyphrases from a document. Thanks to these keyphrases humans can
understand the content of a text very quickly and easily without reading it
completely. Keyphrase extraction was first done primarily by human annotators,
who read the text in detail and then wrote down the most important keyphrases.
The disadvantage is that if you work with a lot of documents, this process
can take a lot of time.
Here is where Artificial Intelligence comes in. Currently, classical machine
learning methods, that use statistical and linguistic features, are widely used
for the extraction process. Now with deep learning, it is possible to capture
the semantic meaning of a text even better than these classical methods.
Classical methods look at the frequency, occurrence and order of words
in the text, whereas these neural approaches can capture long-term
semantic dependencies and context of words in a text.
""".replace("\n", " ")
keyphrases = extractor(text)
print(keyphrases)
```
```
# Output
['keyphrase extraction' 'text analysis']
```
## 📚 Training Dataset
[OpenKP](https://github.com/microsoft/OpenKP) is a large-scale, open-domain keyphrase extraction dataset with 148,124 real-world web documents along with 1-3 most relevant human-annotated keyphrases.
You can find more information in the [paper](https://arxiv.org/abs/1911.02671).
## 👷♂️ Training Procedure
### Training Parameters
| Parameter | Value |
| --------- | ------|
| Learning Rate | 1e-4 |
| Epochs | 50 |
| Early Stopping Patience | 3 |
### Preprocessing
The documents in the dataset are already preprocessed into list of words with the corresponding labels. The only thing that must be done is tokenization and the realignment of the labels so that they correspond with the right subword tokens.
```python
from datasets import load_dataset
from transformers import AutoTokenizer
# Labels
label_list = ["B", "I", "O"]
lbl2idx = {"B": 0, "I": 1, "O": 2}
idx2label = {0: "B", 1: "I", 2: "O"}
# Tokenizer
tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased")
max_length = 512
# Dataset parameters
dataset_full_name = "midas/openkp"
dataset_subset = "raw"
dataset_document_column = "document"
dataset_biotags_column = "doc_bio_tags"
def preprocess_fuction(all_samples_per_split):
tokenized_samples = tokenizer.batch_encode_plus(
all_samples_per_split[dataset_document_column],
padding="max_length",
truncation=True,
is_split_into_words=True,
max_length=max_length,
)
total_adjusted_labels = []
for k in range(0, len(tokenized_samples["input_ids"])):
prev_wid = -1
word_ids_list = tokenized_samples.word_ids(batch_index=k)
existing_label_ids = all_samples_per_split[dataset_biotags_column][k]
i = -1
adjusted_label_ids = []
for wid in word_ids_list:
if wid is None:
adjusted_label_ids.append(lbl2idx["O"])
elif wid != prev_wid:
i = i + 1
adjusted_label_ids.append(lbl2idx[existing_label_ids[i]])
prev_wid = wid
else:
adjusted_label_ids.append(
lbl2idx[
f"{'I' if existing_label_ids[i] == 'B' else existing_label_ids[i]}"
]
)
total_adjusted_labels.append(adjusted_label_ids)
tokenized_samples["labels"] = total_adjusted_labels
return tokenized_samples
# Load dataset
dataset = load_dataset(dataset_full_name, dataset_subset)
# Preprocess dataset
tokenized_dataset = dataset.map(preprocess_fuction, batched=True)
```
### Postprocessing (Without Pipeline Function)
If you do not use the pipeline function, you must filter out the B and I labeled tokens. Each B and I will then be merged into a keyphrase. Finally, you need to strip the keyphrases to make sure all unnecessary spaces have been removed.
```python
# Define post_process functions
def concat_tokens_by_tag(keyphrases):
keyphrase_tokens = []
for id, label in keyphrases:
if label == "B":
keyphrase_tokens.append([id])
elif label == "I":
if len(keyphrase_tokens) > 0:
keyphrase_tokens[len(keyphrase_tokens) - 1].append(id)
return keyphrase_tokens
def extract_keyphrases(example, predictions, tokenizer, index=0):
keyphrases_list = [
(id, idx2label[label])
for id, label in zip(
np.array(example["input_ids"]).squeeze().tolist(), predictions[index]
)
if idx2label[label] in ["B", "I"]
]
processed_keyphrases = concat_tokens_by_tag(keyphrases_list)
extracted_kps = tokenizer.batch_decode(
processed_keyphrases,
skip_special_tokens=True,
clean_up_tokenization_spaces=True,
)
return np.unique([kp.strip() for kp in extracted_kps])
```
## 📝 Evaluation Results
Traditional evaluation methods are the precision, recall and F1-score @k,m where k is the number that stands for the first k predicted keyphrases and m for the average amount of predicted keyphrases.
The model achieves the following results on the OpenKP test set:
| Dataset | P@5 | R@5 | F1@5 | P@10 | R@10 | F1@10 | P@M | R@M | F1@M |
|:-----------------:|:----:|:----:|:----:|:----:|:----:|:-----:|:----:|:----:|:----:|
| OpenKP Test Set | 0.12 | 0.33 | 0.17 | 0.06 | 0.33 | 0.10 | 0.35 | 0.33 | 0.31 |
## 🚨 Issues
Please feel free to start discussions in the Community Tab. |