|
--- |
|
license: apache-2.0 |
|
base_model: |
|
- deepseek-ai/DeepSeek-R1-Distill-Qwen-14B |
|
- Qwen/Qwen2.5-14B-Instruct-1M |
|
pipeline_tag: text-generation |
|
library_name: transformers |
|
--- |
|
|
|
# Qwen2.5-14B-DeepSeek-R1-1M |
|
|
|
A merged model combines the reasoning model's strengths (Qwen2.5-14B-DeepSeek-R1) and the long-context model capabilities (Qwen2.5-14B-Instruct-1M) for versatile performance. |
|
|
|
# Merge config |
|
|
|
```yaml |
|
models: |
|
- model: "deepseek-ai/DeepSeek-R1-Distill-Qwen-14B" |
|
parameters: |
|
weight: 1 |
|
density: 1 |
|
|
|
merge_method: ties |
|
base_model: "Qwen/Qwen2.5-14B-Instruct-1M" |
|
parameters: |
|
density: 1 |
|
normalize: true |
|
int8_mask: true |
|
dtype: bfloat16 |
|
``` |
|
|
|
and I needed to make some minor adjustments to the tokenizer configuration. |
|
|
|
# How to Use |
|
```python |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
|
|
model_name = "mkurman/Qwen2.5-14B-DeepSeek-R1-1M" |
|
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype="auto", device_map="auto") |
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
|
|
prompt = "Write a Python script to merge two CSV files." |
|
messages = [ |
|
{"role": "system", "content": "You are an expert programmer."}, |
|
{"role": "user", "content": prompt} |
|
] |
|
inputs = tokenizer.apply_chat_template(messages, return_tensors="pt").to(model.device) |
|
outputs = model.generate(inputs, max_new_tokens=512) |
|
print(tokenizer.decode(outputs[0], skip_special_tokens=True)) |
|
``` |
|
|
|
You can use it on `LM Studio` or `Ollama` by utilizing the provided GGUF files. |
|
|
|
# License |
|
Apache 2.0 for open-source contribution and collaboration. |