File size: 1,752 Bytes
71c81c4
 
 
 
66a2f47
71c81c4
 
 
 
 
 
 
 
 
 
 
 
 
66a2f47
71c81c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
---

license: apache-2.0
base_model: google/vit-base-patch16-224
tags:
- image-classification
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: vit-base-oxford-iiit-pets
  results: []
---


<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# vit-base-oxford-iiit-pets

This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on the pcuenq/oxford-pets dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1861
- Accuracy: 0.9459

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0003

- train_batch_size: 16

- eval_batch_size: 8

- seed: 42

- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08

- lr_scheduler_type: linear

- num_epochs: 5

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.391         | 1.0   | 370  | 0.3147          | 0.9188   |
| 0.2372        | 2.0   | 740  | 0.2336          | 0.9296   |
| 0.1759        | 3.0   | 1110 | 0.2081          | 0.9364   |
| 0.1369        | 4.0   | 1480 | 0.1964          | 0.9378   |
| 0.1154        | 5.0   | 1850 | 0.1951          | 0.9391   |


### Framework versions

- Transformers 4.42.3
- Pytorch 2.2.1+cu118
- Datasets 2.16.1
- Tokenizers 0.19.1