distilbert-base-uncased-finetuned-emotion
This model is a fine-tuned version of distilbert-base-uncased on the emotion dataset. It achieves the following results on the evaluation set:
- Loss: 0.1548
- Accuracy: 0.9415
- F1: 0.9414
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 128
- eval_batch_size: 128
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
---|---|---|---|---|---|
No log | 1.0 | 125 | 0.2005 | 0.9285 | 0.9292 |
0.2278 | 2.0 | 250 | 0.1661 | 0.9305 | 0.9313 |
0.2278 | 3.0 | 375 | 0.1505 | 0.9355 | 0.9359 |
0.113 | 4.0 | 500 | 0.1447 | 0.9415 | 0.9410 |
0.113 | 5.0 | 625 | 0.1469 | 0.9375 | 0.9375 |
0.0814 | 6.0 | 750 | 0.1407 | 0.9385 | 0.9384 |
0.0814 | 7.0 | 875 | 0.1469 | 0.9395 | 0.9395 |
0.0612 | 8.0 | 1000 | 0.1545 | 0.941 | 0.9405 |
0.0612 | 9.0 | 1125 | 0.1537 | 0.9385 | 0.9388 |
0.0492 | 10.0 | 1250 | 0.1548 | 0.9415 | 0.9414 |
Framework versions
- Transformers 4.31.0
- Pytorch 1.12.1+cu102
- Datasets 2.12.0
- Tokenizers 0.13.3
- Downloads last month
- 7
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for miyao-haruto/distilbert-base-uncased-finetuned-emotion
Base model
distilbert/distilbert-base-uncasedDataset used to train miyao-haruto/distilbert-base-uncased-finetuned-emotion
Evaluation results
- Accuracy on emotionvalidation set self-reported0.942
- F1 on emotionvalidation set self-reported0.941