finetuned_bert-base-on-IEMOCAP_4

This model is a fine-tuned version of bert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.3568
  • Accuracy: 0.6712

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.2828 1.0 113 1.2221 0.4557
0.9978 2.0 226 0.9164 0.6341
0.6524 3.0 339 0.8095 0.6851
0.5501 4.0 452 0.8434 0.6874
0.4188 5.0 565 0.8785 0.6951
0.3462 6.0 678 0.9251 0.7084
0.2205 7.0 791 1.0525 0.6951
0.2596 8.0 904 1.0655 0.7062
0.242 9.0 1017 1.1137 0.7062
0.1651 10.0 1130 1.1869 0.7118
0.1943 11.0 1243 1.2023 0.7029
0.1442 12.0 1356 1.2443 0.6962
0.1569 13.0 1469 1.2965 0.7106
0.1396 14.0 1582 1.3718 0.7007
0.1002 15.0 1695 1.3720 0.7062
0.1051 16.0 1808 1.3800 0.7018
0.1604 17.0 1921 1.4143 0.6962
0.1211 18.0 2034 1.4186 0.7018
0.1083 19.0 2147 1.4322 0.7029
0.0939 20.0 2260 1.4358 0.7007

Framework versions

  • Transformers 4.30.1
  • Pytorch 2.0.1+cu118
  • Datasets 2.12.0
  • Tokenizers 0.13.3
Downloads last month
106
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.