Edit model card

finetune-newwiki-summarization-ver-augmented

This model is a fine-tuned version of VietAI/vit5-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4282
  • Rouge1: 48.7749
  • Rouge2: 26.3665
  • Rougel: 35.7765
  • Rougelsum: 38.0111

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 7
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum
0.6784 1.0 2312 0.5136 46.7374 23.3000 33.5379 35.8923
0.6015 2.0 4624 0.4759 47.7112 24.5817 34.4939 36.9831
0.5587 3.0 6936 0.4543 48.4891 25.6592 35.2310 37.5477
0.5128 4.0 9248 0.4405 48.7777 26.0690 35.5187 37.7896
0.4899 5.0 11560 0.4338 48.6758 26.0670 35.5783 37.8850
0.4796 6.0 13872 0.4295 48.8914 26.5018 35.8671 38.1289
0.4671 7.0 16184 0.4282 48.7749 26.3665 35.7765 38.0111

Framework versions

  • Transformers 4.17.0
  • Pytorch 2.1.2
  • Datasets 2.18.0
  • Tokenizers 0.15.2
Downloads last month
6
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Spaces using minnehwg/finetune-newwiki-summarization-ver-augmented 2