File size: 26,378 Bytes
bd65d2a
 
 
 
 
 
 
 
 
 
 
 
615404a
 
 
 
 
bd65d2a
 
 
 
 
 
 
 
 
 
 
 
 
615404a
bd65d2a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
615404a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bd65d2a
 
 
 
 
 
615404a
bd65d2a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
615404a
bd65d2a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2db1ad3
bd65d2a
 
2678c3e
bd65d2a
 
 
 
 
 
 
 
 
 
 
 
 
 
2db1ad3
 
615404a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2db1ad3
 
 
615404a
2db1ad3
615404a
 
 
 
 
 
 
2db1ad3
 
615404a
2db1ad3
 
 
 
615404a
 
 
 
2db1ad3
615404a
2db1ad3
615404a
2db1ad3
 
615404a
 
2db1ad3
 
615404a
 
 
 
 
2db1ad3
 
615404a
2db1ad3
615404a
2db1ad3
615404a
 
 
 
 
2db1ad3
615404a
 
 
 
 
 
 
 
2db1ad3
615404a
 
 
2db1ad3
 
615404a
2db1ad3
615404a
2db1ad3
 
 
 
 
615404a
2db1ad3
615404a
 
 
 
 
 
 
2db1ad3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
615404a
 
 
 
2db1ad3
 
 
 
 
 
 
615404a
 
 
 
 
2db1ad3
615404a
2db1ad3
615404a
2db1ad3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
615404a
2db1ad3
 
 
 
 
615404a
2db1ad3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
615404a
2db1ad3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bd65d2a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
---
base_model: klue/roberta-base
library_name: setfit
metrics:
- accuracy
pipeline_tag: text-classification
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
widget:
- text: 7 GRAB ME 레드 생로랑 Volupte 리퀴드 컬러 Balm 풀사이즈 B 20대여자 옵션없음 남인터내셔널
- text: 힐러랩 울트라본드 케라틴 단백질 트리트먼트 500ml 옵션없음 주식회사 와이제이비앤
- text: 바이오더마 센시비오 클렌징밀크 250ml 옵션없음 주식회사 하이유로
- text: 에스테티카 데미지 케어 컨센트레이트120ml /헤어오일 에센스 세럼 옵션없음 주식회사 베로유코스메틱
- text: 브이티코스메틱 VT 리들샷 700 시너지리페어 크림 옵션없음 북극곰마켓
inference: true
model-index:
- name: SetFit with klue/roberta-base
  results:
  - task:
      type: text-classification
      name: Text Classification
    dataset:
      name: Unknown
      type: unknown
      split: test
    metrics:
    - type: accuracy
      value: 0.7873765467135884
      name: Accuracy
---

# SetFit with klue/roberta-base

This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [klue/roberta-base](https://huggingface.co/klue/roberta-base) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.

## Model Details

### Model Description
- **Model Type:** SetFit
- **Sentence Transformer body:** [klue/roberta-base](https://huggingface.co/klue/roberta-base)
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
- **Maximum Sequence Length:** 512 tokens
- **Number of Classes:** 13 classes
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)

### Model Labels
| Label | Examples                                                                                                                                                                                             |
|:------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1.0   | <ul><li>'태닝키티파츠 TKT-02-08 썬탠키티 5개입 탄 갸루 하와이 비키니 태닝키티파츠 TKT-02-01 5개입 임프주식회사'</li><li>'지비츠 네일아트 회전 스피너 파츠 부자재 네일 베어링 2.5 사이즈 띠부'</li><li>'루핀 젤클리너 젤리무버 500ml 아세톤 젤클렌져 루핀젤리무버500ml 신나라닷컴'</li></ul>    |
| 7.0   | <ul><li>'마담미쉘 알로베라 퓨어 겔 400ml 알로에 99% 수딩젤 옵션없음 달이커머스'</li><li>'에콜린 비건 밀크 선스크린 50 ml [단품] 비건밀크 선스크린 (18900원) 오가니아(주)'</li><li>'비욘드 엔젤 아쿠아 보습 장벽 선퀴드 50ml_비건 옵션없음 빈티지브릿지'</li></ul>                    |
| 12.0  | <ul><li>'[르네휘테르]나뚜리아 드라이 샴푸 75ml 나뚜리아 드라이 샴푸 75ml 이로븐'</li><li>'탑스칼프 헤어토닉 120ml 두피 클리닉 탑스칼프 탈모샴푸 300ml 주식회사휴웰'</li><li>'케라스타즈 뉴트리티브 마스퀸텐스 리슈 200ml 3474637155001 옵션없음 퓨쳐 디엠 (FUTURE DIEM)'</li></ul> |
| 2.0   | <ul><li>'아나프노 근육 통증 스포츠 온열 찜질 마사지 크림 100ml 아나프노크림 100ml x 1개 케이제이미디어'</li><li>'참존 콘트롤 크림 셀프 마사지 150ml 1개 옵션없음 주식회사 리플레이'</li><li>'리플로우 파워샷 고주파 마사지 크림 옵션없음 호원'</li></ul>                             |
| 8.0   | <ul><li>'가히 멀티밤 CV 본품 9g 가히 멀티밤 CV 본품 1개 ㈜코리아테크'</li><li>'프레티 바이옴 콜라겐 아이크림 30ml 20개 옵션없음 건강드림'</li><li>'르네셀 멀티 펩타이드 토너(재고정리) 옵션없음 숙이네 잡화'</li></ul>                                                  |
| 6.0   | <ul><li>'1/1+1 스틸 마스카라 내추럴 롱래쉬 볼륨 워터프루프 메탈 마스카라 01 블랙x2 와이우'</li><li>'딸리까 리포실 압솔뤼 10ml 옵션없음 스루치로 유한책임회사'</li><li>'디올 어딕트 립 맥시마이저 020 마호가니 옵션없음 스터닝헌팅'</li></ul>                                      |
| 0.0   | <ul><li>'비비드쏘울 위치하젤 젠틀 카밍 앰플 마스크 119 10매 비비드쏘울'</li><li>'알롱 인티메이트 클린저 남성용 청결제 200ml 4개 옵션없음 건강드림'</li><li>'꽃을든남자 이모션 스킨 옵션없음 테디코스'</li></ul>                                                         |
| 4.0   | <ul><li>'AHC 아우라 시크릿 톤업 벨벳 35g+10g 2개 AOD_01)35g+10g 2개+쇼핑백 (주)카버코리아'</li><li>'KANEBO (가네보) 라이브 리스킨 웨어 핑크 오크르 B1개 (x1) 옵션없음 HaruHaru'</li><li>'기획상품 애리조 커버 TV스틱 올 추천템 No.5 다크 베이지 핑쇼59'</li></ul>    |
| 9.0   | <ul><li>'바이오뷰텍 바이오옵틱스 아이크린 리드 클리너 30매 1022127 옵션없음 굿데이'</li><li>'휴대용 종이비누 33종 (챠리, 큐리아, 효겐, 크럭스) 17_효겐 동물 친구들 피코스 드 코레아'</li><li>'식물나라 제주 탄산수 퀵 립 앤 아이 리무버 300ml 옵션없음 밀레니엄'</li></ul>                |
| 10.0  | <ul><li>'장폴고티에 르말 엘릭서 퍼퓸 200ML 옵션없음 비즈앤플랜 주식회사'</li><li>'인센스홀더향 향꽂이 홀더 물방울 인테리어 인센스 (WD2F3FF) 본상품선택 기타/해당사항 없음'</li><li>'디퓨저 섬유 리드스틱 화이트 50개입 디퓨저 섬유 옵션없음 '</li></ul>                                |
| 11.0  | <ul><li>'아모스 휘핑 컬리 펌 옵션없음 티비'</li><li>'과일나라 컨퓸 씨피 헤어 글레이즈 600ml 3개팩 옵션없음 (주)금옥승유통'</li><li>'[소망] 감자 시스테인 1,2제 각 100ml 옵션없음 희망 미용유통'</li></ul>                                                        |
| 5.0   | <ul><li>'라이프홀릭 매너 커버 니플 밴드 100p 3개 one option 옵션없음 지엘디'</li><li>'홈아트 반짝이 빗세트 2P 브러쉬 머리단정 일자빗 옵션없음 제이커머스'</li><li>'가루 파우더 케이스 30g 노세범 땀띠 파우더 소분 공병 (스푼 ) 30g 선데이베리베스트'</li></ul>                      |
| 3.0   | <ul><li>'몬스터팩토리 샤샤샥 제모 크림 100g 옵션없음 주식회사스피드런'</li><li>'라끄베르 때밀이 바디필링 살국수 때필링 300ml 1개 옵션없음 제이앤더블유'</li><li>'꽃보다잠 코사랑크림 유칼립투스오일밤 비염 옵션없음 더 웰리스'</li></ul>                                             |

## Evaluation

### Metrics
| Label   | Accuracy |
|:--------|:---------|
| **all** | 0.7874   |

## Uses

### Direct Use for Inference

First install the SetFit library:

```bash
pip install setfit
```

Then you can load this model and run inference.

```python
from setfit import SetFitModel

# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("mini1013/master_item_bt_test")
# Run inference
preds = model("바이오더마 센시비오 클렌징밀크 250ml 옵션없음 주식회사 하이유로")
```

<!--
### Downstream Use

*List how someone could finetune this model on their own dataset.*
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Set Metrics
| Training set | Min | Median | Max |
|:-------------|:----|:-------|:----|
| Word count   | 3   | 9.3971 | 26  |

| Label | Training Sample Count |
|:------|:----------------------|
| 0.0   | 242                   |
| 1.0   | 134                   |
| 2.0   | 161                   |
| 3.0   | 324                   |
| 4.0   | 141                   |
| 5.0   | 130                   |
| 6.0   | 267                   |
| 7.0   | 133                   |
| 8.0   | 257                   |
| 9.0   | 251                   |
| 10.0  | 63                    |
| 11.0  | 117                   |
| 12.0  | 152                   |

### Training Hyperparameters
- batch_size: (512, 512)
- num_epochs: (50, 50)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 60
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- l2_weight: 0.01
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False

### Training Results
| Epoch   | Step  | Training Loss | Validation Loss |
|:-------:|:-----:|:-------------:|:---------------:|
| 0.0036  | 1     | 0.4112        | -               |
| 0.1799  | 50    | 0.3996        | -               |
| 0.3597  | 100   | 0.3542        | -               |
| 0.5396  | 150   | 0.3073        | -               |
| 0.7194  | 200   | 0.2654        | -               |
| 0.8993  | 250   | 0.2289        | -               |
| 1.0791  | 300   | 0.1949        | -               |
| 1.2590  | 350   | 0.1619        | -               |
| 1.4388  | 400   | 0.1254        | -               |
| 1.6187  | 450   | 0.0899        | -               |
| 1.7986  | 500   | 0.0645        | -               |
| 1.9784  | 550   | 0.0506        | -               |
| 2.1583  | 600   | 0.0403        | -               |
| 2.3381  | 650   | 0.0365        | -               |
| 2.5180  | 700   | 0.0342        | -               |
| 2.6978  | 750   | 0.0329        | -               |
| 2.8777  | 800   | 0.0302        | -               |
| 3.0576  | 850   | 0.0286        | -               |
| 3.2374  | 900   | 0.0272        | -               |
| 3.4173  | 950   | 0.0246        | -               |
| 3.5971  | 1000  | 0.0229        | -               |
| 3.7770  | 1050  | 0.0206        | -               |
| 3.9568  | 1100  | 0.0139        | -               |
| 4.1367  | 1150  | 0.0083        | -               |
| 4.3165  | 1200  | 0.0071        | -               |
| 4.4964  | 1250  | 0.0071        | -               |
| 4.6763  | 1300  | 0.0057        | -               |
| 4.8561  | 1350  | 0.0045        | -               |
| 5.0360  | 1400  | 0.0036        | -               |
| 5.2158  | 1450  | 0.0031        | -               |
| 5.3957  | 1500  | 0.0011        | -               |
| 5.5755  | 1550  | 0.0006        | -               |
| 5.7554  | 1600  | 0.0004        | -               |
| 5.9353  | 1650  | 0.0004        | -               |
| 6.1151  | 1700  | 0.0003        | -               |
| 6.2950  | 1750  | 0.0003        | -               |
| 6.4748  | 1800  | 0.0002        | -               |
| 6.6547  | 1850  | 0.0002        | -               |
| 6.8345  | 1900  | 0.0002        | -               |
| 7.0144  | 1950  | 0.0002        | -               |
| 7.1942  | 2000  | 0.0002        | -               |
| 7.3741  | 2050  | 0.0002        | -               |
| 7.5540  | 2100  | 0.0001        | -               |
| 7.7338  | 2150  | 0.0002        | -               |
| 7.9137  | 2200  | 0.0001        | -               |
| 8.0935  | 2250  | 0.0001        | -               |
| 8.2734  | 2300  | 0.0002        | -               |
| 8.4532  | 2350  | 0.0002        | -               |
| 8.6331  | 2400  | 0.0005        | -               |
| 8.8129  | 2450  | 0.0003        | -               |
| 8.9928  | 2500  | 0.0002        | -               |
| 9.1727  | 2550  | 0.0001        | -               |
| 9.3525  | 2600  | 0.0001        | -               |
| 9.5324  | 2650  | 0.0002        | -               |
| 9.7122  | 2700  | 0.0001        | -               |
| 9.8921  | 2750  | 0.0002        | -               |
| 10.0719 | 2800  | 0.0001        | -               |
| 10.2518 | 2850  | 0.0001        | -               |
| 10.4317 | 2900  | 0.0002        | -               |
| 10.6115 | 2950  | 0.0003        | -               |
| 10.7914 | 3000  | 0.0002        | -               |
| 10.9712 | 3050  | 0.0004        | -               |
| 11.1511 | 3100  | 0.0003        | -               |
| 11.3309 | 3150  | 0.0002        | -               |
| 11.5108 | 3200  | 0.0001        | -               |
| 11.6906 | 3250  | 0.0001        | -               |
| 11.8705 | 3300  | 0.0001        | -               |
| 12.0504 | 3350  | 0.0001        | -               |
| 12.2302 | 3400  | 0.0           | -               |
| 12.4101 | 3450  | 0.0           | -               |
| 12.5899 | 3500  | 0.0001        | -               |
| 12.7698 | 3550  | 0.0001        | -               |
| 12.9496 | 3600  | 0.0003        | -               |
| 13.1295 | 3650  | 0.0002        | -               |
| 13.3094 | 3700  | 0.0002        | -               |
| 13.4892 | 3750  | 0.0004        | -               |
| 13.6691 | 3800  | 0.0002        | -               |
| 13.8489 | 3850  | 0.0001        | -               |
| 14.0288 | 3900  | 0.0001        | -               |
| 14.2086 | 3950  | 0.0002        | -               |
| 14.3885 | 4000  | 0.0001        | -               |
| 14.5683 | 4050  | 0.0001        | -               |
| 14.7482 | 4100  | 0.0           | -               |
| 14.9281 | 4150  | 0.0001        | -               |
| 15.1079 | 4200  | 0.0003        | -               |
| 15.2878 | 4250  | 0.0002        | -               |
| 15.4676 | 4300  | 0.0001        | -               |
| 15.6475 | 4350  | 0.0001        | -               |
| 15.8273 | 4400  | 0.0           | -               |
| 16.0072 | 4450  | 0.0           | -               |
| 16.1871 | 4500  | 0.0           | -               |
| 16.3669 | 4550  | 0.0           | -               |
| 16.5468 | 4600  | 0.0           | -               |
| 16.7266 | 4650  | 0.0           | -               |
| 16.9065 | 4700  | 0.0           | -               |
| 17.0863 | 4750  | 0.0           | -               |
| 17.2662 | 4800  | 0.0001        | -               |
| 17.4460 | 4850  | 0.0           | -               |
| 17.6259 | 4900  | 0.0           | -               |
| 17.8058 | 4950  | 0.0           | -               |
| 17.9856 | 5000  | 0.0002        | -               |
| 18.1655 | 5050  | 0.0002        | -               |
| 18.3453 | 5100  | 0.0002        | -               |
| 18.5252 | 5150  | 0.0005        | -               |
| 18.7050 | 5200  | 0.0001        | -               |
| 18.8849 | 5250  | 0.0           | -               |
| 19.0647 | 5300  | 0.0           | -               |
| 19.2446 | 5350  | 0.0           | -               |
| 19.4245 | 5400  | 0.0           | -               |
| 19.6043 | 5450  | 0.0           | -               |
| 19.7842 | 5500  | 0.0           | -               |
| 19.9640 | 5550  | 0.0001        | -               |
| 20.1439 | 5600  | 0.0           | -               |
| 20.3237 | 5650  | 0.0001        | -               |
| 20.5036 | 5700  | 0.0002        | -               |
| 20.6835 | 5750  | 0.0001        | -               |
| 20.8633 | 5800  | 0.0001        | -               |
| 21.0432 | 5850  | 0.0003        | -               |
| 21.2230 | 5900  | 0.0002        | -               |
| 21.4029 | 5950  | 0.0001        | -               |
| 21.5827 | 6000  | 0.0           | -               |
| 21.7626 | 6050  | 0.0           | -               |
| 21.9424 | 6100  | 0.0           | -               |
| 22.1223 | 6150  | 0.0           | -               |
| 22.3022 | 6200  | 0.0           | -               |
| 22.4820 | 6250  | 0.0           | -               |
| 22.6619 | 6300  | 0.0           | -               |
| 22.8417 | 6350  | 0.0           | -               |
| 23.0216 | 6400  | 0.0           | -               |
| 23.2014 | 6450  | 0.0           | -               |
| 23.3813 | 6500  | 0.0           | -               |
| 23.5612 | 6550  | 0.0           | -               |
| 23.7410 | 6600  | 0.0           | -               |
| 23.9209 | 6650  | 0.0           | -               |
| 24.1007 | 6700  | 0.0           | -               |
| 24.2806 | 6750  | 0.0           | -               |
| 24.4604 | 6800  | 0.0           | -               |
| 24.6403 | 6850  | 0.0           | -               |
| 24.8201 | 6900  | 0.0           | -               |
| 25.0    | 6950  | 0.0           | -               |
| 25.1799 | 7000  | 0.0           | -               |
| 25.3597 | 7050  | 0.0           | -               |
| 25.5396 | 7100  | 0.0           | -               |
| 25.7194 | 7150  | 0.0           | -               |
| 25.8993 | 7200  | 0.0001        | -               |
| 26.0791 | 7250  | 0.0001        | -               |
| 26.2590 | 7300  | 0.0005        | -               |
| 26.4388 | 7350  | 0.0002        | -               |
| 26.6187 | 7400  | 0.0           | -               |
| 26.7986 | 7450  | 0.0           | -               |
| 26.9784 | 7500  | 0.0           | -               |
| 27.1583 | 7550  | 0.0           | -               |
| 27.3381 | 7600  | 0.0           | -               |
| 27.5180 | 7650  | 0.0           | -               |
| 27.6978 | 7700  | 0.0           | -               |
| 27.8777 | 7750  | 0.0002        | -               |
| 28.0576 | 7800  | 0.0001        | -               |
| 28.2374 | 7850  | 0.0001        | -               |
| 28.4173 | 7900  | 0.0           | -               |
| 28.5971 | 7950  | 0.0001        | -               |
| 28.7770 | 8000  | 0.0001        | -               |
| 28.9568 | 8050  | 0.0001        | -               |
| 29.1367 | 8100  | 0.0001        | -               |
| 29.3165 | 8150  | 0.0001        | -               |
| 29.4964 | 8200  | 0.0           | -               |
| 29.6763 | 8250  | 0.0           | -               |
| 29.8561 | 8300  | 0.0           | -               |
| 30.0360 | 8350  | 0.0           | -               |
| 30.2158 | 8400  | 0.0           | -               |
| 30.3957 | 8450  | 0.0           | -               |
| 30.5755 | 8500  | 0.0           | -               |
| 30.7554 | 8550  | 0.0           | -               |
| 30.9353 | 8600  | 0.0           | -               |
| 31.1151 | 8650  | 0.0           | -               |
| 31.2950 | 8700  | 0.0           | -               |
| 31.4748 | 8750  | 0.0           | -               |
| 31.6547 | 8800  | 0.0           | -               |
| 31.8345 | 8850  | 0.0           | -               |
| 32.0144 | 8900  | 0.0           | -               |
| 32.1942 | 8950  | 0.0           | -               |
| 32.3741 | 9000  | 0.0           | -               |
| 32.5540 | 9050  | 0.0           | -               |
| 32.7338 | 9100  | 0.0           | -               |
| 32.9137 | 9150  | 0.0           | -               |
| 33.0935 | 9200  | 0.0           | -               |
| 33.2734 | 9250  | 0.0           | -               |
| 33.4532 | 9300  | 0.0           | -               |
| 33.6331 | 9350  | 0.0           | -               |
| 33.8129 | 9400  | 0.0           | -               |
| 33.9928 | 9450  | 0.0           | -               |
| 34.1727 | 9500  | 0.0           | -               |
| 34.3525 | 9550  | 0.0001        | -               |
| 34.5324 | 9600  | 0.0           | -               |
| 34.7122 | 9650  | 0.0           | -               |
| 34.8921 | 9700  | 0.0           | -               |
| 35.0719 | 9750  | 0.0           | -               |
| 35.2518 | 9800  | 0.0           | -               |
| 35.4317 | 9850  | 0.0001        | -               |
| 35.6115 | 9900  | 0.0           | -               |
| 35.7914 | 9950  | 0.0           | -               |
| 35.9712 | 10000 | 0.0           | -               |
| 36.1511 | 10050 | 0.0           | -               |
| 36.3309 | 10100 | 0.0           | -               |
| 36.5108 | 10150 | 0.0           | -               |
| 36.6906 | 10200 | 0.0           | -               |
| 36.8705 | 10250 | 0.0           | -               |
| 37.0504 | 10300 | 0.0           | -               |
| 37.2302 | 10350 | 0.0           | -               |
| 37.4101 | 10400 | 0.0           | -               |
| 37.5899 | 10450 | 0.0           | -               |
| 37.7698 | 10500 | 0.0           | -               |
| 37.9496 | 10550 | 0.0           | -               |
| 38.1295 | 10600 | 0.0           | -               |
| 38.3094 | 10650 | 0.0           | -               |
| 38.4892 | 10700 | 0.0           | -               |
| 38.6691 | 10750 | 0.0           | -               |
| 38.8489 | 10800 | 0.0           | -               |
| 39.0288 | 10850 | 0.0           | -               |
| 39.2086 | 10900 | 0.0           | -               |
| 39.3885 | 10950 | 0.0           | -               |
| 39.5683 | 11000 | 0.0           | -               |
| 39.7482 | 11050 | 0.0           | -               |
| 39.9281 | 11100 | 0.0           | -               |
| 40.1079 | 11150 | 0.0           | -               |
| 40.2878 | 11200 | 0.0           | -               |
| 40.4676 | 11250 | 0.0           | -               |
| 40.6475 | 11300 | 0.0           | -               |
| 40.8273 | 11350 | 0.0           | -               |
| 41.0072 | 11400 | 0.0           | -               |
| 41.1871 | 11450 | 0.0           | -               |
| 41.3669 | 11500 | 0.0           | -               |
| 41.5468 | 11550 | 0.0           | -               |
| 41.7266 | 11600 | 0.0           | -               |
| 41.9065 | 11650 | 0.0           | -               |
| 42.0863 | 11700 | 0.0           | -               |
| 42.2662 | 11750 | 0.0           | -               |
| 42.4460 | 11800 | 0.0           | -               |
| 42.6259 | 11850 | 0.0           | -               |
| 42.8058 | 11900 | 0.0           | -               |
| 42.9856 | 11950 | 0.0           | -               |
| 43.1655 | 12000 | 0.0           | -               |
| 43.3453 | 12050 | 0.0           | -               |
| 43.5252 | 12100 | 0.0           | -               |
| 43.7050 | 12150 | 0.0           | -               |
| 43.8849 | 12200 | 0.0           | -               |
| 44.0647 | 12250 | 0.0           | -               |
| 44.2446 | 12300 | 0.0           | -               |
| 44.4245 | 12350 | 0.0           | -               |
| 44.6043 | 12400 | 0.0           | -               |
| 44.7842 | 12450 | 0.0           | -               |
| 44.9640 | 12500 | 0.0           | -               |
| 45.1439 | 12550 | 0.0           | -               |
| 45.3237 | 12600 | 0.0           | -               |
| 45.5036 | 12650 | 0.0           | -               |
| 45.6835 | 12700 | 0.0           | -               |
| 45.8633 | 12750 | 0.0           | -               |
| 46.0432 | 12800 | 0.0           | -               |
| 46.2230 | 12850 | 0.0           | -               |
| 46.4029 | 12900 | 0.0           | -               |
| 46.5827 | 12950 | 0.0           | -               |
| 46.7626 | 13000 | 0.0           | -               |
| 46.9424 | 13050 | 0.0           | -               |
| 47.1223 | 13100 | 0.0           | -               |
| 47.3022 | 13150 | 0.0           | -               |
| 47.4820 | 13200 | 0.0           | -               |
| 47.6619 | 13250 | 0.0           | -               |
| 47.8417 | 13300 | 0.0           | -               |
| 48.0216 | 13350 | 0.0           | -               |
| 48.2014 | 13400 | 0.0           | -               |
| 48.3813 | 13450 | 0.0           | -               |
| 48.5612 | 13500 | 0.0           | -               |
| 48.7410 | 13550 | 0.0           | -               |
| 48.9209 | 13600 | 0.0           | -               |
| 49.1007 | 13650 | 0.0           | -               |
| 49.2806 | 13700 | 0.0           | -               |
| 49.4604 | 13750 | 0.0           | -               |
| 49.6403 | 13800 | 0.0           | -               |
| 49.8201 | 13850 | 0.0           | -               |
| 50.0    | 13900 | 0.0           | -               |

### Framework Versions
- Python: 3.10.12
- SetFit: 1.1.0
- Sentence Transformers: 3.3.1
- Transformers: 4.44.2
- PyTorch: 2.2.0a0+81ea7a4
- Datasets: 3.2.0
- Tokenizers: 0.19.1

## Citation

### BibTeX
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->