File size: 7,730 Bytes
ae37ff6
 
 
 
 
 
 
 
 
 
 
 
 
dcb1e53
ae37ff6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dcb1e53
ae37ff6
dcb1e53
ae37ff6
dcb1e53
ae37ff6
dcb1e53
ae37ff6
dcb1e53
ae37ff6
 
 
 
 
 
 
 
 
 
 
 
dcb1e53
ae37ff6
dcb1e53
ae37ff6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
import torch as th
import torch.nn.functional as F
import torch.nn as nn
import lightning as ltn
import argparse
import lightning.pytorch as pl

from torch import Tensor
from torch import nn
from lightning.pytorch.callbacks.early_stopping import EarlyStopping


parser = argparse.ArgumentParser()
parser.add_argument("-n", "--n_epochs", type=int, default=1000, help="number of epochs of training")
parser.add_argument("-b", "--batch", type=int, default=256, help="batch size of training")
parser.add_argument("-m", "--model", type=str, default='mnist0', help="model to execute")
opt = parser.parse_args()

if th.cuda.is_available():
    accelerator = 'gpu'
elif th.backends.mps.is_available():
    accelerator = 'cpu'
else:
    accelerator = 'cpu'


class OptAEGV1(nn.Module):

    def __init__(self, points=11):
        super().__init__()
        self.points = points
        self.iscale = nn.Parameter(th.normal(0, 1, (1, 1, 1, 1)))
        self.oscale = nn.Parameter(th.normal(0, 1, (1, 1, 1, 1)))
        self.theta = th.linspace(-th.pi, th.pi, points)
        self.velocity = th.linspace(0, th.e, points)
        self.weight = nn.Parameter(th.normal(0, 1, (points, points)))

    @th.compile
    def integral(self, param, index):
        return th.sum(param[index].view(-1, 1) * th.softmax(self.weight, dim=1)[index, :], dim=1)

    @th.compile
    def interplot(self, param, index):
        lmt = param.size(0) - 1

        p0 = index.floor().long()
        p1 = p0 + 1
        pos = index - p0
        p0 = p0.clamp(0, lmt)
        p1 = p1.clamp(0, lmt)

        v0 = self.integral(param, p0)
        v1 = self.integral(param, p1)

        return (1 - pos) * v0 + pos * v1

    @th.compile
    def forward(self, data: Tensor) -> Tensor:
        if self.theta.device != data.device:
            self.theta = self.theta.to(data.device)
            self.velocity = self.velocity.to(data.device)
        shape = data.size()
        data = (data - data.mean()) / data.std() * self.iscale
        data = data.flatten(0)

        theta = self.interplot(self.theta, th.sigmoid(data) * (self.points - 1))
        ds = self.interplot(self.velocity, th.abs(th.tanh(data) * (self.points - 1)))

        dx = ds * th.cos(theta)
        dy = ds * th.sin(theta)
        data = data * th.exp(dy) + dx

        data = (data - data.mean()) / data.std() * self.oscale
        return data.view(*shape)


class MNISTModel(ltn.LightningModule):
    def __init__(self):
        super().__init__()
        self.learning_rate = 1e-3
        self.counter = 0
        self.labeled_loss = 0
        self.labeled_correct = 0

    def configure_optimizers(self):
        optimizer = th.optim.Adam(self.parameters(), lr=self.learning_rate)
        scheduler = th.optim.lr_scheduler.CosineAnnealingLR(optimizer, 37)
        return [optimizer], [scheduler]

    def training_step(self, train_batch, batch_idx):
        x, y = train_batch
        x = x.view(-1, 1, 28, 28)
        z = self.forward(x)
        loss = F.nll_loss(z, y)

        self.log('train_loss', loss, prog_bar=True)
        return loss

    def validation_step(self, val_batch, batch_idx):
        x, y = val_batch
        x = x.view(-1, 1, 28, 28)

        z = self.forward(x)
        loss = F.nll_loss(z, y)
        self.log('val_loss', loss, prog_bar=True)

        pred = z.data.max(1, keepdim=True)[1]
        correct = pred.eq(y.data.view_as(pred)).sum() / y.size()[0]
        self.log('correct_rate', correct, prog_bar=True)

        self.labeled_loss += loss.item() * y.size()[0]
        self.labeled_correct += correct.item() * y.size()[0]
        self.counter += y.size()[0]

    def test_step(self, test_batch, batch_idx):
        x, y = test_batch
        x = x.view(-1, 1, 28, 28)
        z = self(x)

        pred = z.data.max(1, keepdim=True)[1]
        correct = pred.eq(y.data.view_as(pred)).sum() / y.size()[0]
        self.log('correct_rate', correct, prog_bar=True)

    def on_save_checkpoint(self, checkpoint) -> None:
        import glob, os

        correct = self.labeled_correct / self.counter
        loss = self.labeled_loss / self.counter
        record = '%2.5f-%03d-%1.5f.ckpt' % (correct, checkpoint['epoch'], loss)
        fname = 'best-%s' % record
        with open(fname, 'bw') as f:
            th.save(checkpoint, f)
        for ix, ckpt in enumerate(sorted(glob.glob('best-*.ckpt'), reverse=True)):
            if ix > 5:
                os.unlink(ckpt)

        self.counter = 0
        self.labeled_loss = 0
        self.labeled_correct = 0

        print()


class MNIST_OptAEGV1(MNISTModel):
    def __init__(self):
        super().__init__()
        self.pool = nn.MaxPool2d(2)
        self.conv0 = nn.Conv2d(1, 2, kernel_size=7, padding=3, bias=False)
        self.lnon0 = OptAEGV1()
        self.conv1 = nn.Conv2d(2, 2, kernel_size=5, padding=2)
        self.lnon1 = OptAEGV1()
        self.conv2 = nn.Conv2d(2, 2, kernel_size=5, padding=2)
        self.lnon2 = OptAEGV1()
        self.conv3 = nn.Conv2d(2, 2, kernel_size=5, padding=2)
        self.lnon3 = OptAEGV1()
        self.fc1 = nn.Linear(2 * 3 * 3, 10)
        self.lnon4 = OptAEGV1()
        self.fc2 = nn.Linear(10, 10, bias=False)
 
    def forward(self, x):
        x = self.conv0(x)
        x = self.lnon0(x)
        x = self.pool(x)
        x = self.conv1(x)
        x = self.lnon1(x)
        x = self.pool(x)
        x = self.conv2(x)
        x = self.lnon2(x)
        x = self.pool(x)
        x = th.flatten(x, 1)
        x = self.fc1(x)
        x = self.lnon4(x)
        x = self.fc2(x)
        x = F.log_softmax(x, dim=1)
        return x


def test_best():
    import glob
    fname = sorted(glob.glob('best-*.ckpt'), reverse=True)[0]
    with open(fname, 'rb') as f:
        checkpoint = th.load(f)
        model.load_state_dict(checkpoint['state_dict'], strict=False)
        model.eval()

        with th.no_grad():
            counter, success = 0, 0
            for test_batch in test_loader:
                x, y = test_batch
                x = x.view(-1, 1, 28, 28)
                z = model(x)
                pred = z.data.max(1, keepdim=True)[1]
                correct = pred.eq(y.data.view_as(pred)).sum() / y.size()[0]
                print('.', end='', flush=True)
                if counter % 100 == 0:
                    print('')
                success += correct.item()
                counter += 1
        print('')
        print('Accuracy: %2.5f' % (success / counter))
        th.save(model, 'mnist-optaeg-v1.pt')


if __name__ == '__main__':

    print('loading data...')
    from torch.utils.data import DataLoader
    from torchvision.datasets import MNIST
    from torchvision import transforms

    mnist_train = MNIST('datasets', train=True, download=True, transform=transforms.Compose([
                                   transforms.ToTensor(),
                                 ]))

    mnist_test = MNIST('datasets', train=False, download=True, transform=transforms.Compose([
                                   transforms.ToTensor(),
                                 ]))

    train_loader = DataLoader(mnist_train, shuffle=True, batch_size=opt.batch, num_workers=8)
    val_loader = DataLoader(mnist_test, batch_size=opt.batch, num_workers=8)
    test_loader = DataLoader(mnist_test, batch_size=opt.batch, num_workers=8)

    # training
    print('construct trainer...')
    trainer = pl.Trainer(accelerator=accelerator, precision=32, max_epochs=opt.n_epochs,
                         callbacks=[EarlyStopping(monitor="correct_rate", mode="max", patience=30)])

    print('construct model...')
    model = MNIST_OptAEGV1()

    print('training...')
    trainer.fit(model, train_loader, val_loader)

    print('testing...')
    test_best()