File size: 2,856 Bytes
a0f2a25 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- amazon_reviews_multi
metrics:
- accuracy
- f1
- precision
- recall
model-index:
- name: selectra-small-finetuned-amazon-review
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: amazon_reviews_multi
type: amazon_reviews_multi
args: es
metrics:
- name: Accuracy
type: accuracy
value: 0.737
- name: F1
type: f1
value: 0.7437773019932409
- name: Precision
type: precision
value: 0.7524857881639091
- name: Recall
type: recall
value: 0.737
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# selectra-small-finetuned-amazon-review
This model is a fine-tuned version of [Recognai/selectra_small](https://huggingface.co/Recognai/selectra_small) on the amazon_reviews_multi dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6279
- Accuracy: 0.737
- F1: 0.7438
- Precision: 0.7525
- Recall: 0.737
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|
| No log | 0.5 | 500 | 0.7041 | 0.7178 | 0.6724 | 0.6715 | 0.7178 |
| 0.7908 | 1.0 | 1000 | 0.6365 | 0.7356 | 0.7272 | 0.7211 | 0.7356 |
| 0.7908 | 1.5 | 1500 | 0.6204 | 0.7376 | 0.7380 | 0.7387 | 0.7376 |
| 0.6358 | 2.0 | 2000 | 0.6162 | 0.7386 | 0.7377 | 0.7380 | 0.7386 |
| 0.6358 | 2.5 | 2500 | 0.6228 | 0.7274 | 0.7390 | 0.7576 | 0.7274 |
| 0.5827 | 3.0 | 3000 | 0.6188 | 0.7378 | 0.7400 | 0.7425 | 0.7378 |
| 0.5827 | 3.5 | 3500 | 0.6246 | 0.7374 | 0.7416 | 0.7467 | 0.7374 |
| 0.5427 | 4.0 | 4000 | 0.6266 | 0.7446 | 0.7452 | 0.7465 | 0.7446 |
| 0.5427 | 4.5 | 4500 | 0.6331 | 0.7392 | 0.7421 | 0.7456 | 0.7392 |
| 0.5184 | 5.0 | 5000 | 0.6279 | 0.737 | 0.7438 | 0.7525 | 0.737 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.0+cu111
- Datasets 1.17.0
- Tokenizers 0.10.3
|