Edit model card

selectra-small-finetuned-amazon-review

This model is a fine-tuned version of Recognai/selectra_small on the amazon_reviews_multi dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6279
  • Accuracy: 0.737
  • F1: 0.7438
  • Precision: 0.7525
  • Recall: 0.737

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
No log 0.5 500 0.7041 0.7178 0.6724 0.6715 0.7178
0.7908 1.0 1000 0.6365 0.7356 0.7272 0.7211 0.7356
0.7908 1.5 1500 0.6204 0.7376 0.7380 0.7387 0.7376
0.6358 2.0 2000 0.6162 0.7386 0.7377 0.7380 0.7386
0.6358 2.5 2500 0.6228 0.7274 0.7390 0.7576 0.7274
0.5827 3.0 3000 0.6188 0.7378 0.7400 0.7425 0.7378
0.5827 3.5 3500 0.6246 0.7374 0.7416 0.7467 0.7374
0.5427 4.0 4000 0.6266 0.7446 0.7452 0.7465 0.7446
0.5427 4.5 4500 0.6331 0.7392 0.7421 0.7456 0.7392
0.5184 5.0 5000 0.6279 0.737 0.7438 0.7525 0.737

Framework versions

  • Transformers 4.15.0
  • Pytorch 1.10.0+cu111
  • Datasets 1.17.0
  • Tokenizers 0.10.3
Downloads last month
16
Hosted inference API
Text Classification
Examples
Examples
This model can be loaded on the Inference API on-demand.

Dataset used to train milyiyo/selectra-small-finetuned-amazon-review

Evaluation results