ft_rugec_A_c1
This model was trained from scratch on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.2239
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 128
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
0.3843 | 0.2088 | 100 | 0.2549 |
0.194 | 0.4175 | 200 | 0.2173 |
0.1732 | 0.6263 | 300 | 0.2121 |
0.1696 | 0.8351 | 400 | 0.2007 |
0.1495 | 1.0438 | 500 | 0.2043 |
0.1387 | 1.2526 | 600 | 0.2050 |
0.1362 | 1.4614 | 700 | 0.2051 |
0.1357 | 1.6701 | 800 | 0.2009 |
0.128 | 1.8789 | 900 | 0.2027 |
0.1307 | 2.0877 | 1000 | 0.1997 |
0.1213 | 2.2965 | 1100 | 0.2024 |
0.1169 | 2.5052 | 1200 | 0.2034 |
0.1194 | 2.7140 | 1300 | 0.2034 |
0.125 | 2.9228 | 1400 | 0.2031 |
Framework versions
- Transformers 4.48.1
- Pytorch 2.5.1+cu124
- Datasets 3.0.1
- Tokenizers 0.21.0
- Downloads last month
- 11
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.