Audio_CREMA

This model is a fine-tuned version of facebook/wav2vec2-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8274
  • Accuracy: 0.7909
  • Weighted f1: 0.7913
  • Micro f1: 0.7909
  • Macro f1: 0.7909
  • Weighted recall: 0.7909
  • Micro recall: 0.7909
  • Macro recall: 0.7945
  • Weighted precision: 0.8014
  • Micro precision: 0.7909
  • Macro precision: 0.7976

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 15
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy Weighted f1 Micro f1 Macro f1 Weighted recall Micro recall Macro recall Weighted precision Micro precision Macro precision
1.0002 1.0 55 1.0265 0.5477 0.5159 0.5477 0.5169 0.5477 0.5477 0.5486 0.5338 0.5477 0.5341
0.8613 2.0 110 0.9630 0.5795 0.5540 0.5795 0.5558 0.5795 0.5795 0.5825 0.5737 0.5795 0.5718
0.7676 3.0 165 0.8474 0.6659 0.6655 0.6659 0.6624 0.6659 0.6659 0.6629 0.6746 0.6659 0.6713
0.6886 4.0 220 0.9269 0.6318 0.6203 0.6318 0.6198 0.6318 0.6318 0.6351 0.6581 0.6318 0.6506
0.6536 5.0 275 0.7114 0.7341 0.7364 0.7341 0.7350 0.7341 0.7341 0.7360 0.7472 0.7341 0.7424
0.4429 6.0 330 0.7026 0.7432 0.7419 0.7432 0.7406 0.7432 0.7432 0.7425 0.7417 0.7432 0.7399
0.3755 7.0 385 0.6925 0.7682 0.7679 0.7682 0.7680 0.7682 0.7682 0.7717 0.7743 0.7682 0.7712
0.3603 8.0 440 0.7445 0.7591 0.7608 0.7591 0.7604 0.7591 0.7591 0.7610 0.7740 0.7591 0.7716
0.296 9.0 495 0.7235 0.7614 0.7577 0.7614 0.7590 0.7614 0.7614 0.7669 0.7718 0.7614 0.7685
0.2854 10.0 550 0.6988 0.7818 0.7832 0.7818 0.7824 0.7818 0.7818 0.7840 0.7923 0.7818 0.7891
0.2655 11.0 605 0.7530 0.7568 0.7526 0.7568 0.7539 0.7568 0.7568 0.7618 0.7632 0.7568 0.7605
0.1359 12.0 660 0.7503 0.7955 0.7974 0.7955 0.7972 0.7955 0.7955 0.7997 0.8110 0.7955 0.8069
0.1258 13.0 715 0.8318 0.7659 0.7634 0.7659 0.7638 0.7659 0.7659 0.7710 0.7808 0.7659 0.7767
0.0731 14.0 770 0.8758 0.7727 0.7718 0.7727 0.7715 0.7727 0.7727 0.7766 0.7883 0.7727 0.7846
0.0676 15.0 825 0.8274 0.7909 0.7913 0.7909 0.7909 0.7909 0.7909 0.7945 0.8014 0.7909 0.7976

Framework versions

  • Transformers 4.18.0
  • Pytorch 1.11.0
  • Datasets 2.1.0
  • Tokenizers 0.12.1
Downloads last month
2
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.