Model Card for UniXcoder-base

Model Details

Model Description

UniXcoder is a unified cross-modal pre-trained model that leverages multimodal data (i.e. code comment and AST) to pretrain code representation.

  • Developed by: Microsoft Team
  • Shared by [Optional]: Hugging Face
  • Model type: Feature Engineering
  • Language(s) (NLP): en
  • License: Apache-2.0
  • Related Models:
    • Parent Model: RoBERTa
  • Resources for more information:

Uses

1. Dependency

  • pip install torch
  • pip install transformers

2. Quick Tour

We implement a class to use UniXcoder and you can follow the code to build UniXcoder. You can download the class by

wget https://raw.githubusercontent.com/microsoft/CodeBERT/master/UniXcoder/unixcoder.py
import torch
from unixcoder import UniXcoder

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = UniXcoder("microsoft/unixcoder-base")
model.to(device)

In the following, we will give zero-shot examples for several tasks under different mode, including code search (encoder-only), code completion (decoder-only), function name prediction (encoder-decoder) , API recommendation (encoder-decoder), code summarization (encoder-decoder).

3. Encoder-only Mode

For encoder-only mode, we give an example of code search.

1) Code and NL Embeddings

Here, we give an example to obtain code fragment embedding from CodeBERT.

# Encode maximum function
func = "def f(a,b): if a>b: return a else return b"
tokens_ids = model.tokenize([func],max_length=512,mode="<encoder-only>")
source_ids = torch.tensor(tokens_ids).to(device)
tokens_embeddings,max_func_embedding = model(source_ids)

# Encode minimum function
func = "def f(a,b): if a<b: return a else return b"
tokens_ids = model.tokenize([func],max_length=512,mode="<encoder-only>")
source_ids = torch.tensor(tokens_ids).to(device)
tokens_embeddings,min_func_embedding = model(source_ids)

# Encode NL
nl = "return maximum value"
tokens_ids = model.tokenize([nl],max_length=512,mode="<encoder-only>")
source_ids = torch.tensor(tokens_ids).to(device)
tokens_embeddings,nl_embedding = model(source_ids)

print(max_func_embedding.shape)
print(max_func_embedding)
torch.Size([1, 768])
tensor([[ 8.6533e-01, -1.9796e+00, -8.6849e-01,  4.2652e-01, -5.3696e-01,
         -1.5521e-01,  5.3770e-01,  3.4199e-01,  3.6305e-01, -3.9391e-01,
         -1.1816e+00,  2.6010e+00, -7.7133e-01,  1.8441e+00,  2.3645e+00,
                 ...,
         -2.9188e+00,  1.2555e+00, -1.9953e+00, -1.9795e+00,  1.7279e+00,
          6.4590e-01, -5.2769e-02,  2.4965e-01,  2.3962e-02,  5.9996e-02,
          2.5659e+00,  3.6533e+00,  2.0301e+00]], device='cuda:0',
       grad_fn=<DivBackward0>)

2) Similarity between code and NL

Now, we calculate cosine similarity between NL and two functions. Although the difference of two functions is only a operator (< and >), UniXcoder can distinguish them.

# Normalize embedding
norm_max_func_embedding = torch.nn.functional.normalize(max_func_embedding, p=2, dim=1)
norm_min_func_embedding = torch.nn.functional.normalize(min_func_embedding, p=2, dim=1)
norm_nl_embedding = torch.nn.functional.normalize(nl_embedding, p=2, dim=1)

max_func_nl_similarity = torch.einsum("ac,bc->ab",norm_max_func_embedding,norm_nl_embedding)
min_func_nl_similarity = torch.einsum("ac,bc->ab",norm_min_func_embedding,norm_nl_embedding)

print(max_func_nl_similarity)
print(min_func_nl_similarity)
tensor([[0.3002]], device='cuda:0', grad_fn=<ViewBackward>)
tensor([[0.1881]], device='cuda:0', grad_fn=<ViewBackward>)

3. Decoder-only Mode

For decoder-only mode, we give an example of code completion.

context = """
def f(data,file_path):
    # write json data into file_path in python language
"""
tokens_ids = model.tokenize([context],max_length=512,mode="<decoder-only>")
source_ids = torch.tensor(tokens_ids).to(device)
prediction_ids = model.generate(source_ids, decoder_only=True, beam_size=3, max_length=128)
predictions = model.decode(prediction_ids)
print(context+predictions[0][0])
def f(data,file_path):
    # write json data into file_path in python language
    data = json.dumps(data)
    with open(file_path, 'w') as f:
        f.write(data)

4. Encoder-Decoder Mode

For encoder-decoder mode, we give two examples including: function name prediction, API recommendation, code summarization.

1) Function Name Prediction

context = """
def <mask0>(data,file_path):
    data = json.dumps(data)
    with open(file_path, 'w') as f:
        f.write(data)
"""
tokens_ids = model.tokenize([context],max_length=512,mode="<encoder-decoder>")
source_ids = torch.tensor(tokens_ids).to(device)
prediction_ids = model.generate(source_ids, decoder_only=False, beam_size=3, max_length=128)
predictions = model.decode(prediction_ids)
print([x.replace("<mask0>","").strip() for x in predictions[0]])
['write_json', 'write_file', 'to_json']

2) API Recommendation

context = """
def write_json(data,file_path):
    data = <mask0>(data)
    with open(file_path, 'w') as f:
        f.write(data)
"""
tokens_ids = model.tokenize([context],max_length=512,mode="<encoder-decoder>")
source_ids = torch.tensor(tokens_ids).to(device)
prediction_ids = model.generate(source_ids, decoder_only=False, beam_size=3, max_length=128)
predictions = model.decode(prediction_ids)
print([x.replace("<mask0>","").strip() for x in predictions[0]])
['json.dumps', 'json.loads', 'str']

3) Code Summarization

context = """
# <mask0>
def write_json(data,file_path):
    data = json.dumps(data)
    with open(file_path, 'w') as f:
        f.write(data)
"""
tokens_ids = model.tokenize([context],max_length=512,mode="<encoder-decoder>")
source_ids = torch.tensor(tokens_ids).to(device)
prediction_ids = model.generate(source_ids, decoder_only=False, beam_size=3, max_length=128)
predictions = model.decode(prediction_ids)
print([x.replace("<mask0>","").strip() for x in predictions[0]])
['Write JSON to file', 'Write json to file', 'Write a json file']

Reference

If you use this code or UniXcoder, please consider citing us.

@article{guo2022unixcoder,
  title={UniXcoder: Unified Cross-Modal Pre-training for Code Representation},
  author={Guo, Daya and Lu, Shuai and Duan, Nan and Wang, Yanlin and Zhou, Ming and Yin, Jian},
  journal={arXiv preprint arXiv:2203.03850},
  year={2022}
}
Downloads last month
14,266
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.