File size: 11,228 Bytes
b800bab
 
 
a63f283
ca30dd4
 
 
a63f283
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b800bab
 
 
 
ca30dd4
b800bab
 
 
39afec1
 
 
 
 
 
 
 
 
 
b800bab
 
a63c22c
e22cfa2
ca30dd4
b800bab
 
 
 
 
 
 
 
 
 
 
 
cb2f453
b800bab
 
ca30dd4
 
b800bab
 
 
 
 
 
 
 
 
 
ca30dd4
 
b800bab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cb2f453
b800bab
 
25a6b01
cb2f453
a63c22c
cb2f453
a63c22c
b800bab
cb2f453
b800bab
cb2f453
25a6b01
ca30dd4
 
 
b800bab
ca30dd4
b800bab
ca30dd4
 
b800bab
25a6b01
ca30dd4
 
 
 
 
 
 
 
 
 
b800bab
 
 
ca30dd4
b800bab
 
 
 
 
834565c
b800bab
a63c22c
b800bab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ca30dd4
b800bab
 
 
c46d6cf
b800bab
 
 
a63f283
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
---
language:
- en
license: mit
tags:
- nlp
- code
license_link: https://huggingface.co/microsoft/phi-2/resolve/main/LICENSE
pipeline_tag: text-generation
model-index:
- name: phi-2
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: AI2 Reasoning Challenge (25-Shot)
      type: ai2_arc
      config: ARC-Challenge
      split: test
      args:
        num_few_shot: 25
    metrics:
    - type: acc_norm
      value: 61.09
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=microsoft/phi-2
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: HellaSwag (10-Shot)
      type: hellaswag
      split: validation
      args:
        num_few_shot: 10
    metrics:
    - type: acc_norm
      value: 75.11
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=microsoft/phi-2
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU (5-Shot)
      type: cais/mmlu
      config: all
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 58.11
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=microsoft/phi-2
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: TruthfulQA (0-shot)
      type: truthful_qa
      config: multiple_choice
      split: validation
      args:
        num_few_shot: 0
    metrics:
    - type: mc2
      value: 44.47
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=microsoft/phi-2
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: Winogrande (5-shot)
      type: winogrande
      config: winogrande_xl
      split: validation
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 74.35
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=microsoft/phi-2
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GSM8k (5-shot)
      type: gsm8k
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 54.81
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=microsoft/phi-2
      name: Open LLM Leaderboard
---

## Model Summary

Phi-2 is a Transformer with **2.7 billion** parameters. It was trained using the same data sources as [Phi-1.5](https://huggingface.co/microsoft/phi-1.5), augmented with a new data source that consists of various NLP synthetic texts and filtered websites (for safety and educational value). When assessed against benchmarks testing common sense, language understanding, and logical reasoning, Phi-2 showcased a nearly state-of-the-art performance among models with less than 13 billion parameters.

Our model hasn't been fine-tuned through reinforcement learning from human feedback. The intention behind crafting this open-source model is to provide the research community with a non-restricted small model to explore vital safety challenges, such as reducing toxicity, understanding societal biases, enhancing controllability, and more.

## How to Use

Phi-2 has been integrated in the development version (4.37.0.dev) of `transformers`. Until the official version is released through `pip`, ensure that you are doing one of the following:

* When loading the model, ensure that `trust_remote_code=True` is passed as an argument of the `from_pretrained()` function.

* Update your local `transformers` to the development version: `pip uninstall -y transformers && pip install git+https://github.com/huggingface/transformers`. The previous command is an alternative to cloning and installing from the source.

The current `transformers` version can be verified with: `pip list | grep transformers`.

## Intended Uses

Given the nature of the training data, the Phi-2 model is best suited for prompts using the QA format, the chat format, and the code format.

### QA Format:

You can provide the prompt as a standalone question as follows:

```markdown
Write a detailed analogy between mathematics and a lighthouse.
```
where the model generates the text after "." . 
To encourage the model to write more concise answers, you can also try the following QA format using "Instruct: \<prompt\>\nOutput:"
```markdown
Instruct: Write a detailed analogy between mathematics and a lighthouse.
Output: Mathematics is like a lighthouse. Just as a lighthouse guides ships safely to shore, mathematics provides a guiding light in the world of numbers and logic. It helps us navigate through complex problems and find solutions. Just as a lighthouse emits a steady beam of light, mathematics provides a consistent framework for reasoning and problem-solving. It illuminates the path to understanding and helps us make sense of the world around us.
```

where the model generates the text after "Output:".

### Chat Format:

```markdown
Alice: I don't know why, I'm struggling to maintain focus while studying. Any suggestions?
Bob: Well, have you tried creating a study schedule and sticking to it?
Alice: Yes, I have, but it doesn't seem to help much.
Bob: Hmm, maybe you should try studying in a quiet environment, like the library.
Alice: ...
```

where the model generates the text after the first "Bob:".

### Code Format:

```python
def print_prime(n):
   """
   Print all primes between 1 and n
   """
   primes = []
   for num in range(2, n+1):
       is_prime = True
       for i in range(2, int(math.sqrt(num))+1):
           if num % i == 0:
               is_prime = False
               break
       if is_prime:
           primes.append(num)
   print(primes)
```

where the model generates the text after the comments.

**Notes:**

* Phi-2 is intended for QA, chat, and code purposes. The model-generated text/code should be treated as a starting point rather than a definitive solution for potential use cases. Users should be cautious when employing these models in their applications.

* Direct adoption for production tasks without evaluation is out of scope of this project. As a result, the Phi-2 model has not been tested to ensure that it performs adequately for any production-level application. Please refer to the limitation sections of this document for more details.

* If you are using `transformers<4.37.0`, always load the model with `trust_remote_code=True` to prevent side-effects.

## Sample Code

```python
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

torch.set_default_device("cuda")

model = AutoModelForCausalLM.from_pretrained("microsoft/phi-2", torch_dtype="auto", trust_remote_code=True)
tokenizer = AutoTokenizer.from_pretrained("microsoft/phi-2", trust_remote_code=True)

inputs = tokenizer('''def print_prime(n):
   """
   Print all primes between 1 and n
   """''', return_tensors="pt", return_attention_mask=False)

outputs = model.generate(**inputs, max_length=200)
text = tokenizer.batch_decode(outputs)[0]
print(text)
```

## Limitations of Phi-2

* Generate Inaccurate Code and Facts: The model may produce incorrect code snippets and statements. Users should treat these outputs as suggestions or starting points, not as definitive or accurate solutions.

* Limited Scope for code: Majority of Phi-2 training data is based in Python and use common packages such as "typing, math, random, collections, datetime, itertools". If the model generates Python scripts that utilize other packages or scripts in other languages, we strongly recommend users manually verify all API uses.

* Unreliable Responses to Instruction: The model has not undergone instruction fine-tuning. As a result, it may struggle or fail to adhere to intricate or nuanced instructions provided by users.

* Language Limitations: The model is primarily designed to understand standard English. Informal English, slang, or any other languages might pose challenges to its comprehension, leading to potential misinterpretations or errors in response.

* Potential Societal Biases: Phi-2 is not entirely free from societal biases despite efforts in assuring training data safety. There's a possibility it may generate content that mirrors these societal biases, particularly if prompted or instructed to do so. We urge users to be aware of this and to exercise caution and critical thinking when interpreting model outputs.

* Toxicity: Despite being trained with carefully selected data, the model can still produce harmful content if explicitly prompted or instructed to do so. We chose to release the model to help the open-source community develop the most effective ways to reduce the toxicity of a model directly after pretraining.

* Verbosity: Phi-2 being a base model often produces irrelevant or extra text and responses following its first answer to user prompts within a single turn. This is due to its training dataset being primarily textbooks, which results in textbook-like responses.

## Training

### Model

* Architecture: a Transformer-based model with next-word prediction objective

* Context length: 2048 tokens

* Dataset size: 250B tokens, combination of NLP synthetic data created by AOAI GPT-3.5 and filtered web data from Falcon RefinedWeb and SlimPajama, which was assessed by AOAI GPT-4.

* Training tokens: 1.4T tokens

* GPUs: 96xA100-80G

* Training time: 14 days

### Software

* [PyTorch](https://github.com/pytorch/pytorch)

* [DeepSpeed](https://github.com/microsoft/DeepSpeed)

* [Flash-Attention](https://github.com/HazyResearch/flash-attention)

### License

The model is licensed under the [MIT license](https://huggingface.co/microsoft/phi-2/resolve/main/LICENSE).

## Trademarks

This project may contain trademarks or logos for projects, products, or services. Authorized use of Microsoft trademarks or logos is subject to and must follow [Microsoft’s Trademark & Brand Guidelines](https://www.microsoft.com/en-us/legal/intellectualproperty/trademarks). Use of Microsoft trademarks or logos in modified versions of this project must not cause confusion or imply Microsoft sponsorship. Any use of third-party trademarks or logos are subject to those third-party’s policies.
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_microsoft__phi-2)

|             Metric              |Value|
|---------------------------------|----:|
|Avg.                             |61.33|
|AI2 Reasoning Challenge (25-Shot)|61.09|
|HellaSwag (10-Shot)              |75.11|
|MMLU (5-Shot)                    |58.11|
|TruthfulQA (0-shot)              |44.47|
|Winogrande (5-shot)              |74.35|
|GSM8k (5-shot)                   |54.81|