File size: 32,198 Bytes
1698206
 
 
d655135
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1698206
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d655135
 
1698206
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d655135
 
1698206
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d655135
1698206
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d655135
1698206
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d655135
1698206
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d655135
 
1698206
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d655135
 
1698206
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT license.

# BSD 3-Clause License
# 
# Copyright (c) 2022, Tri Dao, trid@cs.stanford.edu.
# All rights reserved.
# 
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
# 
# * Redistributions of source code must retain the above copyright notice, this
#   list of conditions and the following disclaimer.
# 
# * Redistributions in binary form must reproduce the above copyright notice,
#   this list of conditions and the following disclaimer in the documentation
#   and/or other materials provided with the distribution.
# 
# * Neither the name of the copyright holder nor the names of its
#   contributors may be used to endorse or promote products derived from
#   this software without specific prior written permission.
# 
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

from __future__ import annotations

import math
import copy
from typing import Any, Dict, Optional, Tuple
from dataclasses import dataclass, field

import torch
import torch.nn as nn

from einops import rearrange
from transformers.activations import ACT2FN
from transformers import PretrainedConfig, PreTrainedModel
from transformers.modeling_outputs import CausalLMOutputWithPast

from .configuration_mixformer_sequential import MixFormerSequentialConfig

@dataclass
class InferenceParams:
    """Inference parameters that are passed to the main model in order
    to efficienly calculate and store the context during inference.
    Adapted from https://github.com/Dao-AILab/flash-attention."""
    max_sequence_len: int
    max_batch_size: int
    sequence_len_offset: int = 0
    batch_size_offset: int = 0
    key_value_memory_dict: dict = field(default_factory=dict)
    fused_ft_kernel: bool = False
    lengths_per_sample: Optional[torch.Tensor] = None


class Embedding(nn.Module):
    """Token embedding with dropout."""

    def __init__(self, config: PretrainedConfig) -> None:
        super().__init__()

        self.wte = nn.Embedding(config.vocab_size, config.n_embd)
        self.drop = nn.Dropout(config.embd_pdrop)

    def forward(self, input_ids: torch.LongTensor) -> torch.FloatTensor:
        input_shape = input_ids.size()
        input_ids = input_ids.view(-1, input_shape[-1])

        hidden_states = self.wte(input_ids)
        hidden_states = self.drop(hidden_states)

        return hidden_states

class RotaryEmbedding(nn.Module):
    """PyTorch implementation of `flash-attn` RotaryEmbedding layer.
    Adapted from https://github.com/Dao-AILab/flash-attention."""

    def __init__(
        self,
        dim: int,
        base: Optional[int] = 10000,
        scale_base: Optional[float] = None,
        device: Optional[str] = None,
        **kwargs,
    ) -> None:
        super().__init__()

        if scale_base is not None:
            raise NotImplementedError

        # Generate and save the inverse frequency buffer (non-trainable)
        self.dim = dim
        self.base = base
        self.scale_base = scale_base
        self.device = device

        inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2, device=device, dtype=torch.float32) / dim))
        self.register_buffer("inv_freq", inv_freq)

        scale = (
            (torch.arange(0, dim, 2, device=device, dtype=torch.float32) + 0.4 * dim) / (1.4 * dim)
            if scale_base is not None
            else None
        )
        self.register_buffer("scale", scale)

        self._seq_len_cached = 0
        self._cos_cached = None
        self._sin_cached = None
        self._cos_k_cached = None
        self._sin_k_cached = None

    def _update_cos_sin_cache(self, x: torch.FloatTensor, seqlen_offset: Optional[int] = 0) -> None:
        # Reset the tables if the sequence length has changed,
        # or if we're on a new device (possibly due to tracing for instance)
        seqlen = x.shape[1] + seqlen_offset

        # Re-generate the inverse frequency buffer if it's not fp32
        # (for instance if model.half() was called)
        if self.inv_freq.dtype != "torch.float32":
            self.inv_freq = 1.0 / (
                self.base ** (torch.arange(0, self.dim, 2, device=self.device, dtype=torch.float32) / self.dim)
            )

        if seqlen > self._seq_len_cached or self._cos_cached.device != x.device or self._cos_cached.dtype != x.dtype:
            self._seq_len_cached = seqlen
            t = torch.arange(seqlen, device=x.device, dtype=torch.float32)

            # Don't do einsum, it converts fp32 to fp16
            # freqs = torch.einsum("i,j->ij", t, self.inv_freq)
            freqs = torch.outer(t, self.inv_freq.to(device=t.device, dtype=torch.float32))
            if self.scale is None:
                self._cos_cached = torch.cos(freqs).to(x.dtype)
                self._sin_cached = torch.sin(freqs).to(x.dtype)
            else:
                power = (
                    torch.arange(seqlen, dtype=self.scale.dtype, device=self.scale.device) - seqlen // 2
                ) / self.scale_base
                scale = self.scale.to(device=power.device) ** rearrange(power, "s -> s 1")

                # We want the multiplication by scale to happen in fp32
                self._cos_cached = (torch.cos(freqs) * scale).to(x.dtype)
                self._sin_cached = (torch.sin(freqs) * scale).to(x.dtype)
                self._cos_k_cached = (torch.cos(freqs) / scale).to(x.dtype)
                self._sin_k_cached = (torch.sin(freqs) / scale).to(x.dtype)

    def apply_rotary_emb_qkv(
        self,
        qkv: torch.FloatTensor,
        sin: torch.FloatTensor,
        cos: torch.FloatTensor,
        sin_k: Optional[torch.FloatTensor] = None,
        cos_k: Optional[torch.FloatTensor] = None,
    ) -> torch.FloatTensor:
        _, seqlen, three, _, headdim = qkv.shape
        assert three == 3

        rotary_seqlen, rotary_dim = cos.shape
        rotary_dim *= 2
        assert rotary_dim <= headdim
        assert seqlen <= rotary_seqlen

        cos_k = cos if cos_k is None else cos_k
        sin_k = sin if sin_k is None else sin_k
        assert sin.shape == cos_k.shape == sin_k.shape == (rotary_seqlen, rotary_dim // 2)

        q_rot = qkv[:, :, 0, :, :rotary_dim]
        q_pass = qkv[:, :, 0, :, rotary_dim:]

        k_rot = qkv[:, :, 1, :, :rotary_dim]
        k_pass = qkv[:, :, 1, :, rotary_dim:]

        # Splits the queries and keys in half
        q1, q2 = q_rot.chunk(2, dim=-1)
        k1, k2 = k_rot.chunk(2, dim=-1)
        c, s = rearrange(cos[:seqlen], "s d -> s 1 d"), rearrange(sin[:seqlen], "s d -> s 1 d")

        # Casts to fp32 are necessary to prevent fp16 overflow issues
        q1, q2, k1, k2, c, s = [t.to(dtype=torch.float32) for t in [q1, q2, k1, k2, c, s]]

        # Computes the new keys and queries, recasting to original dtype
        q_rot = torch.cat([q1 * c - q2 * s, q1 * s + q2 * c], axis=-1).to(qkv.dtype)

        k_rot = torch.cat([k1 * c - k2 * s, k1 * s + k2 * c], axis=-1).to(qkv.dtype)

        return torch.cat(
            [
                torch.cat([q_rot, q_pass], axis=-1).unsqueeze(2),
                torch.cat([k_rot, k_pass], axis=-1).unsqueeze(2),
                qkv[:, :, 2:3, :, :],
            ],
            axis=2,
        )

    def forward(self, qkv: torch.Tensor, seqlen_offset: int = 0) -> Tuple[torch.Tensor, torch.Tensor]:
        """Perform the forward pass.

        Args:
            qkv: Query, key and value tensors of shape (batch, seqlen, nheads, headdim) or (batch, seqlen, 3, nheads, headdim).
            seqlen_offset: Used in generation where the passed `qkv` is only the last token in the batch.

        Returns:
            New `qkv` and the cached sinusoids.

        """

        self._update_cos_sin_cache(qkv, seqlen_offset)

        return self.apply_rotary_emb_qkv(qkv, self._sin_cached[seqlen_offset:], self._cos_cached[seqlen_offset:])

def _update_kv_cache(kv, inference_params, layer_idx):
    """kv: (batch_size, seqlen, 2, nheads, head_dim) or (batch_size, 1, 2, nheads, head_dim)
    Adapted from https://github.com/Dao-AILab/flash-attention."""
    # Pre-allocate memory for key-values for inference.
    num_heads, head_dim = kv.shape[-2:]
    if layer_idx not in inference_params.key_value_memory_dict:
        kv_cache = torch.empty(
            inference_params.max_batch_size, inference_params.max_sequence_len, 2,
            num_heads, head_dim, dtype=kv.dtype, device=kv.device
        )
        inference_params.key_value_memory_dict[layer_idx] = kv_cache
    else:
        kv_cache = inference_params.key_value_memory_dict[layer_idx]

    # Adjust key and value for inference
    batch_start = inference_params.batch_size_offset
    batch_end = batch_start + kv.shape[0]
    sequence_start = inference_params.sequence_len_offset
    sequence_end = sequence_start + kv.shape[1]
    assert batch_end <= (kv_cache.shape[0] if kv_cache is not None else v_cache.shape[0])
    assert sequence_end <= (kv_cache.shape[1] if kv_cache is not None else v_cache.shape[2])

    assert kv_cache is not None
    kv_cache[batch_start:batch_end, sequence_start:sequence_end, ...] = kv
    kv = kv_cache[batch_start:batch_end, :sequence_end, ...]
    return kv


class MLP(nn.Module):
    """Multi-Layer Perceptron.

    Reference:
        Attention Is All You Need.
        https://arxiv.org/pdf/1706.03762.pdf.

    """

    def __init__(self, config: PretrainedConfig, n_inner: Optional[int] = None, act_fn: Optional[str] = None) -> None:
        super().__init__()

        act_fn = config.activation_function if act_fn is None else act_fn
        assert act_fn in ACT2FN.keys(), f"`act_fn` must be one of: {ACT2FN.keys()}."

        n_inner = getattr(config, "n_inner", None) if n_inner is None else n_inner
        n_inner = n_inner if n_inner is not None else 4 * config.n_embd

        self.fc1 = nn.Linear(config.n_embd, n_inner)
        self.fc2 = nn.Linear(n_inner, config.n_embd)
        self.act = ACT2FN[act_fn]

    def _load_from_state_dict(self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs):
        old_keys = [prefix + "fc_in.weight", prefix + "fc_out.weight", prefix + "fc_in.bias", prefix + "fc_out.bias"]
        new_keys = [prefix + "fc1.weight", prefix + "fc2.weight", prefix + "fc1.bias", prefix + "fc2.bias"]
        
        if all(k in state_dict for k in old_keys) and not all(k in state_dict for k in new_keys):
            # Older version of `MLP` saved with different key names.
            for old_key, new_key in zip(old_keys, new_keys):
                state_dict[new_key] = state_dict.pop(old_key)

        return super()._load_from_state_dict(state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs)
    
    def forward(self, hidden_states: torch.FloatTensor) -> torch.FloatTensor:
        hidden_states = self.fc1(hidden_states)
        hidden_states = self.act(hidden_states)
        hidden_states = self.fc2(hidden_states)

        return hidden_states


class FusedMLP(nn.Module):
    """Fused Multi-Layer Perceptron from `flash-attn`.

    Reference:
        https://github.com/HazyResearch/flash-attention/blob/main/flash_attn/ops/fused_dense.py.

    """
    def __init__(self, config: PretrainedConfig, n_inner: Optional[int] = None, act_fn: Optional[str] = None, 
                 raise_on_missing: bool = False) -> None:
        super().__init__()

        act_fn = config.activation_function if act_fn is None else act_fn
        assert act_fn in ACT2FN.keys(), f"`act_fn` must be one of: {ACT2FN.keys()}."

        n_inner = getattr(config, "n_inner", None) if n_inner is None else n_inner
        n_inner = n_inner if n_inner is not None else 4 * config.n_embd

        gelu_activations = ["gelu_new", "gelu_fast", "gelu_approx"]
        activation = "gelu_approx" if act_fn in gelu_activations else "relu"
           
        self.mlp = MLP(config, n_inner=n_inner, act_fn=act_fn)
    
    def forward(self, hidden_states: torch.FloatTensor) -> torch.FloatTensor:
        return self.mlp(hidden_states)

class SelfAttention(nn.Module):
    """Implement the scaled dot product attention with softmax.
    Adapted from https://github.com/Dao-AILab/flash-attention.
    Arguments
    ---------
        softmax_scale: The temperature to use for the softmax attention.
                      (default: 1/sqrt(d_keys) where d_keys is computed at
                      runtime)
        attention_dropout: The dropout rate to apply to the attention
                           (default: 0.0)
    """
    def __init__(self, causal=False, softmax_scale=None, attention_dropout=0.0):
        super().__init__()
        self.causal = causal
        self.softmax_scale = softmax_scale
        self.drop = nn.Dropout(attention_dropout)

    def forward(self, qkv, causal=None, key_padding_mask=None):
        """Implements the multihead softmax attention.
        Arguments
        ---------
            qkv: The tensor containing the query, key, and value. (B, S, 3, H, D)
            causal: if passed, will override self.causal
            key_padding_mask: boolean mask to apply to the attention weights. True means to keep,
                False means to mask out. (B, S)
        """
        batch_size, seqlen = qkv.shape[0], qkv.shape[1]
        causal = self.causal if causal is None else causal
        q, k, v = qkv.unbind(dim=2)
        softmax_scale = self.softmax_scale or 1.0 / math.sqrt(q.shape[-1])
        scores = torch.einsum('bthd,bshd->bhts', q, k * softmax_scale)
        if key_padding_mask is not None:
            padding_mask = torch.full((batch_size, seqlen), -10000.0, dtype=scores.dtype,
                                      device=scores.device)
            padding_mask.masked_fill_(key_padding_mask, 0.0)
            # TD [2022-09-30]: Adding is faster than masked_fill_ (idk why, just better kernel I guess)
            scores = scores + rearrange(padding_mask, 'b s -> b 1 1 s')
        if causal:
            # "triu_tril_cuda_template" not implemented for 'BFloat16'
            # So we have to construct the mask in float
            causal_mask = torch.triu(torch.full((seqlen, seqlen), -10000.0, device=scores.device), 1)
            # TD [2022-09-30]: Adding is faster than masked_fill_ (idk why, just better kernel I guess)
            scores = scores + causal_mask.to(dtype=scores.dtype)
        attention = torch.softmax(scores, dim=-1, dtype=v.dtype)
        attention_drop = self.drop(attention)
        output = torch.einsum('bhts,bshd->bthd', attention_drop, v)
        return output


class CrossAttention(nn.Module):
    """Implement the scaled dot product attention with softmax.
    Adapted from https://github.com/Dao-AILab/flash-attention.
    Arguments
    ---------
        softmax_scale: The temperature to use for the softmax attention.
                      (default: 1/sqrt(d_keys) where d_keys is computed at
                      runtime)
        attention_dropout: The dropout rate to apply to the attention
                           (default: 0.0)
    """
    def __init__(self, causal=False, softmax_scale=None, attention_dropout=0.0):
        super().__init__()
        self.causal = causal
        self.softmax_scale = softmax_scale
        self.drop = nn.Dropout(attention_dropout)

    def forward(self, q, kv, causal=None, key_padding_mask=None):
        """Implements the multihead softmax attention.
        Arguments
        ---------
            q: The tensor containing the query. (B, Sq, H, D)
            kv: The tensor containing the key and value. (B, Sk, 2, H, D)
            causal: if passed, will override self.causal
            key_padding_mask: boolean mask to apply to the attention weights. True means to keep,
                False means to mask out. (B, Sk)
        """
        batch_size, seqlen_q = q.shape[0], q.shape[1]
        causal = self.causal if causal is None else causal
        seqlen_k = kv.shape[1]
        assert kv.shape[0] == batch_size and kv.shape[3] == q.shape[2] and kv.shape[4] == q.shape[3]
        k, v = kv.unbind(dim=2)
        softmax_scale = self.softmax_scale or 1.0 / math.sqrt(q.shape[-1])
        scores = torch.einsum('bthd,bshd->bhts', q, k * softmax_scale)
        if key_padding_mask is not None:
            padding_mask = torch.full((batch_size, seqlen_k), -10000.0, dtype=scores.dtype,
                                      device=scores.device)
            padding_mask.masked_fill_(key_padding_mask, 0.0)
            # TD [2022-09-30]: Adding is faster than masked_fill_ (idk why, just better kernel I guess)
            scores = scores + rearrange(padding_mask, 'b s -> b 1 1 s')
        if causal:
            # "triu_tril_cuda_template" not implemented for 'BFloat16'
            # So we have to construct the mask in float
            causal_mask = torch.triu(torch.full((seqlen_q, seqlen_k), -10000.0,
                                                device=scores.device), 1)
            # TD [2022-09-30]: Adding is faster than masked_fill_ (idk why, just better kernel I guess)
            scores = scores + causal_mask.to(dtype=scores.dtype)
        attention = torch.softmax(scores, dim=-1, dtype=v.dtype)
        attention_drop = self.drop(attention)
        output = torch.einsum('bhts,bshd->bthd', attention_drop, v)
        return output

def find_mha_dims(
    config: PretrainedConfig, n_head: Optional[int] = None, head_dim: Optional[int] = None
) -> Tuple[int, int]:
    """Validate and return the number of heads and head dimension for multi-head attention.

    Args:
        config: Model configuration.
        n_head: Number of heads.
        head_dim: Head dimension.

    Returns:
        Number of heads and head dimension.

    """

    assert all(
        hasattr(config, attr) for attr in ["n_embd", "n_head"]
    ), "`config` must have `n_embd` and `n_head` attributes."

    if head_dim is None:
        assert (
            config.n_embd % config.n_head == 0
        ), f"Hidden size ({config.n_embd}) must be divisible by the number of heads ({config.n_head})."

    if n_head is None and head_dim is None:
        head_dim = config.n_embd // config.n_head
        n_head = config.n_head
    elif n_head is None or head_dim is None:
        raise ValueError("`n_head` and `head_dim` must be both specified or `None`.")

    return n_head, head_dim


class MHA(nn.Module):
    """Multi-head attention layer.
    Adapted from https://github.com/Dao-AILab/flash-attention."""

    def __init__(
        self,
        config: PretrainedConfig,
        rotary_dim: Optional[int] = None,
        n_head: Optional[int] = None,
        head_dim: Optional[int] = None,
        bias: Optional[bool] = True,
        dropout: Optional[float] = 0.0,
        softmax_scale: Optional[float] = None,
        causal: Optional[bool] = True,
        layer_idx: Optional[int] = None,
        rotary_emb_scale_base: Optional[float] = None,
        return_residual: Optional[bool] = False,
        checkpointing: Optional[bool] = False,
        device: Optional[str] = None,
        dtype: Optional[torch.dtype] = None,
        fused_dense: Optional[bool] = True,
        flash_attn: Optional[bool] = True,
        cutlass_attn: Optional[bool] = False,
        flash_rotary: Optional[bool] = True,
        raise_on_missing: Optional[bool] = False
    ) -> None:
        super().__init__()

        factory_kwargs = {"device": device, "dtype": dtype}
        n_head, head_dim = find_mha_dims(config, n_head, head_dim)

        self.hidden_size = config.n_embd
        self.n_head = n_head
        self.head_dim = head_dim
        self.op_size = n_head * head_dim

        self.causal = causal
        self.layer_idx = layer_idx
        self.rotary_emb_dim = rotary_dim if rotary_dim is not None else getattr(config, "rotary_dim", 0)
        self.fused_dense = fused_dense
        self.flash_attn = flash_attn
        self.cutlass_attn = cutlass_attn
        self.flash_rotary = flash_rotary
        self.return_residual = return_residual
        self.checkpointing = checkpointing

        if self.rotary_emb_dim > 0:
            rotary_kwargs = {"device": device}
            if rotary_emb_scale_base is not None and rotary_emb_scale_base > 0.0:
                rotary_kwargs["scale_base"] = rotary_emb_scale_base
            
            self.rotary_emb = RotaryEmbedding(self.rotary_emb_dim, **rotary_kwargs)
        else:
            pass

        self.Wqkv = nn.Linear(self.hidden_size, 3 * self.op_size, bias=bias, **factory_kwargs)
        self.out_proj = nn.Linear(self.op_size, self.hidden_size, bias=bias, **factory_kwargs)

        self.inner_attn = SelfAttention(causal=causal, softmax_scale=softmax_scale, attention_dropout=dropout)
        self.inner_cross_attn = CrossAttention(causal=causal, softmax_scale=softmax_scale, attention_dropout=dropout)

    def _update_kv_cache(self, kv: torch.FloatTensor, inference_params: InferenceParams) -> None:
        """kv: (batch_size, seqlen, 2, nheads, head_dim) or (batch_size, 1, 2, nheads, head_dim)
        Adapted from https://github.com/Dao-AILab/flash-attention."""

        assert self.layer_idx is not None, "Generation requires layer_idx in the constructor"

        return _update_kv_cache(kv, inference_params, self.layer_idx)

    def forward(
        self,
        x: torch.FloatTensor,
        x_kv: Optional[torch.FloatTensor] = None,
        key_padding_mask: Optional[torch.BoolTensor] = None,
        cu_seqlens: Optional[torch.LongTensor] = None,
        max_seqlen: Optional[int] = None,
        mixer_subset: Optional[torch.LongTensor] = None,
        past_cache: Optional[InferenceParams] = None,
        **kwargs
    ) -> Tuple[torch.FloatTensor, torch.FloatTensor]:
        """Perform the forward pass.

        Args:
            x: (batch, seqlen, hidden_dim) (where hidden_dim = num heads * head dim) if
                cu_seqlens is None and max_seqlen is None, else (total, hidden_dim) where total
                is the is the sum of the sequence lengths in the batch.
            x_kv: (batch, seqlen, hidden_dim), only applicable for cross-attention. If None, use x.
            key_padding_mask: boolean mask, True means to keep, False means to mask out.
                (batch, seqlen). Only applicable when not using FlashAttention.
            cu_seqlens: (batch_size + 1,), dtype torch.int32. The cumulative sequence lengths
                of the sequences in the batch, used to index into x. Only applicable when using
                FlashAttention.
            max_seqlen: int. Maximum sequence length in the batch.
            mixer_subset: for cross-attention only. If not None, will take a subset of x
                before applying the query projection. Useful for e.g., ViT where we only care
                about the CLS token in the last layer.
            past_cache: For generation only.

        Returns:
            (batch, seqlen, hidden_dim) if cu_seqlens is None and max_seqlen is None,
                else (total, hidden_dim) where total is the is the sum of the sequence lengths
                in the batch.

        """

        if cu_seqlens is not None:
            assert max_seqlen is not None
            assert key_padding_mask is None
            assert self.flash_attn
            assert self.rotary_emb_dim == 0

        if key_padding_mask is not None:
            assert cu_seqlens is None
            assert max_seqlen is None
            assert not self.flash_attn

        if past_cache is not None:
            assert key_padding_mask is None
            assert cu_seqlens is None and max_seqlen is None

        attn_kwargs = {"key_padding_mask": key_padding_mask}

        assert x_kv is None and mixer_subset is None

        qkv = self.Wqkv(x)
        qkv = rearrange(qkv, "... (three h d) -> ... three h d", three=3, d=self.head_dim)

        if past_cache is None:
            if self.rotary_emb_dim > 0:
                qkv = self.rotary_emb(qkv)
                context = self.inner_attn(qkv, **attn_kwargs)

        else:
            if self.rotary_emb_dim > 0:
                qkv = self.rotary_emb(qkv, seqlen_offset=past_cache.sequence_len_offset)
            q = qkv[:, :, 0]
            kv = self._update_kv_cache(qkv[:, :, 1:], past_cache)
            # If we're processing the prompt, causal=None (use self.causal).
            # If we're decoding, then causal=False.
            causal = None if past_cache.sequence_len_offset == 0 else False
            context = self.inner_cross_attn(q, kv, causal=causal)

        out = rearrange(context, "... h d -> ... (h d)")
        out = self.out_proj(out)

        return out if not self.return_residual else (out, x)

class ParallelBlock(nn.Module):
    """Parallel block.

    This block applies parallel mixer and MLP layers to the input (used in GPT-J and CodeGen).

    """

    def __init__(
        self,
        config: PretrainedConfig,
        mixer: Optional[Dict[str, Any]] = None,
        mlp: Optional[Dict[str, Any]] = None,
        block_idx: Optional[int] = None,
    ) -> None:
        super().__init__()

        self.ln = nn.LayerNorm(config.n_embd, eps=config.layer_norm_epsilon)
        self.resid_dropout = nn.Dropout(config.resid_pdrop)
        self.block_idx = block_idx

        self.mixer = MHA(config=config, **mixer, layer_idx=block_idx)
        mlp_cls = mlp.pop('mlp_cls')
        if mlp_cls == 'fused_mlp':
            self.mlp = FusedMLP(config=config, **mlp)
        else:
            self.mlp = MLP(config=config, **mlp)

    def forward(self, hidden_states: torch.FloatTensor, 
                past_cache: Optional[torch.FloatTensor] = None) -> torch.FloatTensor:
        residual = hidden_states
        hidden_states = self.ln(hidden_states)

        attn_outputs = self.mixer(hidden_states, past_cache=past_cache)
        if isinstance(attn_outputs, tuple):
            attn_outputs = attn_outputs[0]

        attn_outputs = self.resid_dropout(attn_outputs)
        feed_forward_hidden_states = self.resid_dropout(self.mlp(hidden_states))

        hidden_states = attn_outputs + feed_forward_hidden_states + residual

        return hidden_states

class CausalLMHead(nn.Module):
    """Causal Language Modeling head.

    Reference:
        Improving Language Understanding by Generative Pre-Training.
        https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf.

    """

    def __init__(self, config: PretrainedConfig) -> None:
        super().__init__()

        self.ln = nn.LayerNorm(config.n_embd, eps=config.layer_norm_epsilon)
        self.linear = nn.Linear(config.n_embd, config.vocab_size)

    def forward(self, hidden_states: torch.FloatTensor) -> torch.FloatTensor:
        hidden_states = self.ln(hidden_states)
        logits = self.linear(hidden_states).to(torch.float32)

        return logits


class CausalLMLoss(nn.Module):
    """Causal Language Modeling loss.

    Reference:
        Improving Language Understanding by Generative Pre-Training.
        https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf.

    """

    def __init__(self, shift_labels: Optional[bool] = True) -> None:
        super().__init__()

        self.shift_labels = shift_labels
        self.loss_fct = nn.CrossEntropyLoss()

    def forward(self, logits: torch.FloatTensor, labels: torch.LongTensor) -> torch.FloatTensor:
        if self.shift_labels:
            logits = logits[..., :-1, :].contiguous()
            labels = labels[..., 1:].contiguous()

        loss = self.loss_fct(logits.view(-1, logits.size(-1)), labels.view(-1))

        return loss

class MixFormerSequentialPreTrainedModel(PreTrainedModel):
    """MixFormer (sequential for DeepSpeed) pre-trained model."""

    config_class = MixFormerSequentialConfig
    base_model_prefix = "transformer"
    supports_gradient_checkpointing = True

    def __init__(self, *inputs, **kwargs) -> None:
        super().__init__(*inputs, **kwargs)

    def prepare_inputs_for_generation(self, input_ids, past_key_values=None, **kwargs) -> Dict[str, Any]:
        if "use_cache" in kwargs and not kwargs["use_cache"]:
            return {"input_ids": input_ids}

        if past_key_values is None or not (isinstance(past_key_values, InferenceParams)):
            past_key_values = InferenceParams(
                max_batch_size=input_ids.shape[0],
                max_sequence_len=self.config.n_positions,
                sequence_len_offset=0,
                batch_size_offset=0,
                fused_ft_kernel=False,
                key_value_memory_dict={},
            )
        else:
            # assume past_key_values has cached all but last token in input_ids
            past_key_values.sequence_len_offset = len(input_ids[0]) - 1
            input_ids = input_ids[:, -1].unsqueeze(-1)

        return {"input_ids": input_ids, "past_key_values": past_key_values, **kwargs}


class MixFormerSequentialForCausalLM(MixFormerSequentialPreTrainedModel):
    """MixFormer (sequential for DeepSpeed) for Causal Language Modeling."""

    _keys_to_ignore_on_load_missing = [""]
    _keys_to_ignore_on_load_unexpected = [r"layers\.\d+\.mlp.(fc_in|fc_out)\.(weight|bias)"]

    def __init__(self, config: MixFormerSequentialConfig) -> None:
        super().__init__(config)

        modules = [Embedding(config)]
        block_config = config.architecture

        if not isinstance(block_config, list):
            block_config = [block_config for _ in range(config.n_layer)]

        if config.n_layer != len(block_config):
            config.n_layer = len(block_config)

        for block_idx, block in enumerate(block_config):
            # `block_cls` with `legacy` value is for backward compatibility
            # `path` key is for backward compatibility
            block = copy.deepcopy(block) or {"block_cls": "parallel"}
            block_cls = block.pop("path", None) or block.pop("block_cls", None)

            block["block_idx"] = block_idx
            modules.append(ParallelBlock(config, **block))

        modules.append(CausalLMHead(config))

        self.layers = nn.Sequential(*modules)
        self.loss = CausalLMLoss()

        self.post_init()

    def get_input_embeddings(self) -> nn.Embedding:
        return self.layers[0].wte

    def set_input_embeddings(self, new_embeddings: nn.Embedding) -> None:
        self.layers[0].wte = new_embeddings

    def get_output_embeddings(self) -> nn.Linear:
        return self.layers[-1].linear

    def set_output_embeddings(self, new_embeddings: nn.Linear) -> None:
        self.layers[-1].linear = new_embeddings

    def forward(
        self, input_ids: torch.LongTensor, labels: Optional[torch.LongTensor] = None, 
        past_key_values: Optional[torch.FloatTensor] = None, **kwargs
    ) -> CausalLMOutputWithPast:

        if not past_key_values:
            lm_logits = self.layers(input_ids)
        else:
            hidden_layer = self.layers[0](input_ids)
            for module in self.layers[1:-1]:
                hidden_layer = module(hidden_layer, past_cache=past_key_values)
            lm_logits = self.layers[-1](hidden_layer)

        loss = None
        if labels is not None:
            loss = self.loss(lm_logits, labels)
        
        return CausalLMOutputWithPast(loss=loss, logits=lm_logits, past_key_values=past_key_values)