File size: 2,842 Bytes
77bc930 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 |
# Promptist: reinforcement learning for automatic prompt optimization
## News
- [Demo Release] Dec, 2022: [Demo at HuggingFace Space](https://aka.ms/promptist-demo)
- [Model Release] Dec, 2022: [link](#load-pretrained-model-for-stable-diffusion-v14)
- [Paper Release] Dec, 2022: [Optimizing Prompts for Text-to-Image Generation](https://aka.ms/promptist-paper)
> - Language models serve as a prompt interface that optimizes user input into model-preferred prompts.
> - Learn a language model for automatic prompt optimization via reinforcement learning.
![image](https://user-images.githubusercontent.com/1070872/207856962-02f08d92-f2bf-441a-b1c3-efff1a4b6187.png)
## Load Pretrained Model for [Stable Diffusion v1.4](https://huggingface.co/CompVis/stable-diffusion-v1-4)
You can try the online demo at [https://huggingface.co/spaces/microsoft/Promptist](https://huggingface.co/spaces/microsoft/Promptist).
`[Note]` the online demo at HuggingFace Space is using CPU, so slow generation speed would be expected. Please load the model locally with GPUs for faster generation.
```python
import gradio as grad
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
def load_prompter():
prompter_model = AutoModelForCausalLM.from_pretrained("microsoft/Promptist")
tokenizer = AutoTokenizer.from_pretrained("gpt2")
tokenizer.pad_token = tokenizer.eos_token
tokenizer.padding_side = "left"
return prompter_model, tokenizer
prompter_model, prompter_tokenizer = load_prompter()
def generate(plain_text):
input_ids = prompter_tokenizer(plain_text.strip()+" Rephrase:", return_tensors="pt").input_ids
eos_id = prompter_tokenizer.eos_token_id
outputs = prompter_model.generate(input_ids, do_sample=False, max_new_tokens=75, num_beams=8, num_return_sequences=8, eos_token_id=eos_id, pad_token_id=eos_id, length_penalty=-1.0)
output_texts = prompter_tokenizer.batch_decode(outputs, skip_special_tokens=True)
res = output_texts[0].replace(plain_text+" Rephrase:", "").strip()
return res
txt = grad.Textbox(lines=1, label="Initial Text", placeholder="Input Prompt")
out = grad.Textbox(lines=1, label="Optimized Prompt")
examples = ["A rabbit is wearing a space suit", "Several railroad tracks with one train passing by", "The roof is wet from the rain", "Cats dancing in a space club"]
grad.Interface(fn=generate,
inputs=txt,
outputs=out,
title="Promptist Demo",
description="Promptist is a prompt interface for Stable Diffusion v1-4 (https://huggingface.co/CompVis/stable-diffusion-v1-4) that optimizes user input into model-preferred prompts.",
examples=examples,
allow_flagging='never',
cache_examples=False,
theme="default").launch(enable_queue=True, debug=True)
```
|