metadata
library_name: transformers
license: llama3.2
base_model: meta-llama/Llama-3.2-3B-Instruct
tags:
- generated_from_trainer
datasets:
- shuffled_output.json
model-index:
- name: models/llama_wm_v3
results: []
See axolotl config
axolotl version: 0.5.3.dev44+g5bef1906
base_model: meta-llama/Llama-3.2-3B-Instruct
plugins:
- axolotl.integrations.liger.LigerPlugin
liger_rope: true
liger_rms_norm: true
liger_glu_activation: true
liger_layer_norm: true
liger_fused_linear_cross_entropy: true
datasets:
- path: shuffled_output.json
type: input_output
dataset_prepared_path: last_run_prepared
dataset_exact_deduplication: false
sequence_length: 131072
pad_to_sequence_len: true
output_dir: ./models/llama_wm_v3
wandb_project: agent-v0
wandb_name: llama-3b_wm_v3
train_on_inputs: false
gradient_checkpointing: true
gradient_checkpointing_kwargs:
use_reentrant: false
gradient_accumulation_steps: 4
micro_batch_size: 4
num_epochs: 1
optimizer: adamw_torch
learning_rate: 2e-5
xformers_attention:
flash_attention: true
logging_steps: 5
warmup_steps: 10
saves_per_epoch: 1
weight_decay: 0.0
deepspeed: axolotl/deepspeed_configs/zero3_bf16_cpuoffload_all.json
special_tokens:
pad_token: <|end_of_text|>
models/llama_wm_v3
This model is a fine-tuned version of meta-llama/Llama-3.2-3B-Instruct on the shuffled_output.json dataset.
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- total_eval_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 1
Training results
Framework versions
- Transformers 4.47.0
- Pytorch 2.5.1+cu124
- Datasets 3.1.0
- Tokenizers 0.21.0