--- library_name: transformers license: llama3.2 base_model: meta-llama/Llama-3.2-3B-Instruct tags: - generated_from_trainer datasets: - shuffled_output.json model-index: - name: models/llama_wm_v3 results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.5.3.dev44+g5bef1906` ```yaml base_model: meta-llama/Llama-3.2-3B-Instruct plugins: - axolotl.integrations.liger.LigerPlugin liger_rope: true liger_rms_norm: true liger_glu_activation: true liger_layer_norm: true liger_fused_linear_cross_entropy: true datasets: - path: shuffled_output.json type: input_output dataset_prepared_path: last_run_prepared dataset_exact_deduplication: false sequence_length: 131072 pad_to_sequence_len: true output_dir: ./models/llama_wm_v3 wandb_project: agent-v0 wandb_name: llama-3b_wm_v3 train_on_inputs: false gradient_checkpointing: true gradient_checkpointing_kwargs: use_reentrant: false gradient_accumulation_steps: 4 micro_batch_size: 4 num_epochs: 1 optimizer: adamw_torch learning_rate: 2e-5 xformers_attention: flash_attention: true logging_steps: 5 warmup_steps: 10 saves_per_epoch: 1 weight_decay: 0.0 deepspeed: axolotl/deepspeed_configs/zero3_bf16_cpuoffload_all.json special_tokens: pad_token: <|end_of_text|> ```

# models/llama_wm_v3 This model is a fine-tuned version of [meta-llama/Llama-3.2-3B-Instruct](https://huggingface.co/meta-llama/Llama-3.2-3B-Instruct) on the shuffled_output.json dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - total_eval_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - num_epochs: 1 ### Training results ### Framework versions - Transformers 4.47.0 - Pytorch 2.5.1+cu124 - Datasets 3.1.0 - Tokenizers 0.21.0