File size: 3,195 Bytes
70f9c3d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "id": "953dfc98",
   "metadata": {},
   "outputs": [],
   "source": [
    "from awq import AutoAWQForCausalLM\n",
    "from transformers import AutoTokenizer, AutoProcessor, TextStreamer\n",
    "from PIL import Image\n",
    "import requests\n",
    "import torch"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "id": "c667ce7b",
   "metadata": {},
   "outputs": [],
   "source": [
    "quant_path = './llava-v1.6-34b-awq'"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "id": "6adbf36e",
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "Replacing layers...: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 60/60 [00:06<00:00,  9.86it/s]\n",
      "Fusing layers...: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 60/60 [00:00<00:00, 166.86it/s]\n"
     ]
    }
   ],
   "source": [
    "model = AutoAWQForCausalLM.from_quantized(quant_path, safetensors=True, device_map=\"auto\")\n",
    "processor = AutoProcessor.from_pretrained(quant_path)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "id": "d8ab8031",
   "metadata": {},
   "outputs": [],
   "source": [
    "url = \"https://github.com/haotian-liu/LLaVA/blob/1a91fc274d7c35a9b50b3cb29c4247ae5837ce39/images/llava_v1_5_radar.jpg?raw=true\"\n",
    "image = Image.open(requests.get(url, stream=True).raw)\n",
    "prompt = \"<|im_start|>system\\nAnswer the questions.<|im_end|><|im_start|>user\\n<image>\\nWhat is shown in this image?<|im_end|><|im_start|>assistant\\n\""
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "id": "350d6426",
   "metadata": {},
   "outputs": [],
   "source": [
    "inputs = processor(prompt, image, return_tensors='pt').to(0, torch.float16)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "id": "24c9ac90",
   "metadata": {},
   "outputs": [],
   "source": [
    "streamer = TextStreamer(processor)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "74e964aa",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "<|im_start|> system\n",
      "Answer the questions.<|im_end|><|im_start|> user\n",
      "<image> \n",
      "What is shown in this image?<|im_end|><|im_start|> assistant\n",
      "The image shows a radar chart with various data points. The chart is a polar plot with concentric "
     ]
    }
   ],
   "source": [
    "generation_output = model.generate(**inputs,max_new_tokens=1024, streamer = streamer)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "4ae4ca43",
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.12"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}