File size: 13,424 Bytes
e5d3156
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
69b6e00
e5d3156
 
 
 
 
 
 
 
69b6e00
e5d3156
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.

# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
# --------------------------------------------------------
# References:
# mae: https://github.com/facebookresearch/mae
# slowfast: https://github.com/facebookresearch/SlowFast
# --------------------------------------------------------


from functools import partial
from typing import Tuple, Optional

import math
import torch
import torch.nn as nn

from .hiera import Hiera, HieraBlock
from .hiera_utils import pretrained_model, undo_windowing, conv_nd


def apply_fusion_head(head: nn.Module, x: torch.Tensor) -> torch.Tensor:
    if isinstance(head, nn.Identity):
        return x

    B, num_mask_units = x.shape[0:2]
    # Apply head, e.g [B, #MUs, My, Mx, C] -> head([B * #MUs, C, My, Mx])
    permute = [0] + [len(x.shape) - 2] + list(range(1, len(x.shape) - 2))
    x = head(x.reshape(B * num_mask_units, *x.shape[2:]).permute(permute))

    # Restore original layout, e.g. [B * #MUs, C', My', Mx'] -> [B, #MUs, My', Mx', C']
    permute = [0] + list(range(2, len(x.shape))) + [1]
    x = x.permute(permute).reshape(B, num_mask_units, *x.shape[2:], x.shape[1])
    return x


class MaskedAutoencoderHiera(Hiera):
    """Masked Autoencoder with Hiera backbone"""

    def __init__(
        self,
        in_chans: int = 3,
        patch_stride: Tuple[int, ...] = (4, 4),
        mlp_ratio: float = 4.0,
        decoder_embed_dim: int = 512,
        decoder_depth: int = 8,
        decoder_num_heads: int = 16,
        norm_layer: nn.Module = partial(nn.LayerNorm, eps=1e-6),
        **kwdargs,
    ):
        super().__init__(
            in_chans=in_chans,
            patch_stride=patch_stride,
            mlp_ratio=mlp_ratio,
            norm_layer=norm_layer,
            **kwdargs,
        )

        del self.norm, self.head
        encoder_dim_out = self.blocks[-1].dim_out
        self.encoder_norm = norm_layer(encoder_dim_out)
        self.mask_unit_spatial_shape_final = [
            i // s ** (self.q_pool) for i, s in zip(self.mask_unit_size, self.q_stride)
        ]
        self.tokens_spatial_shape_final = [
            i // s ** (self.q_pool)
            for i, s in zip(self.tokens_spatial_shape, self.q_stride)
        ]
        # --------------------------------------------------------------------------
        # Multi-scale fusion heads
        curr_mu_size = self.mask_unit_size
        self.multi_scale_fusion_heads = nn.ModuleList()

        for i in self.stage_ends[: self.q_pool]:  # resolution constant after q_pool
            kernel = [
                i // s for i, s in zip(curr_mu_size, self.mask_unit_spatial_shape_final)
            ]
            curr_mu_size = [i // s for i, s in zip(curr_mu_size, self.q_stride)]
            self.multi_scale_fusion_heads.append(
                conv_nd(len(self.q_stride))(
                    self.blocks[i].dim_out,
                    encoder_dim_out,
                    kernel_size=kernel,
                    stride=kernel,
                )
            )
        self.multi_scale_fusion_heads.append(nn.Identity())  # final stage, no transform

        # --------------------------------------------------------------------------
        # MAE decoder specifics
        self.decoder_embed = nn.Linear(encoder_dim_out, decoder_embed_dim)

        self.mask_token = nn.Parameter(torch.zeros(1, 1, decoder_embed_dim))

        self.decoder_pos_embed = nn.Parameter(
            torch.zeros(
                1, math.prod(self.tokens_spatial_shape_final), decoder_embed_dim
            )
        )

        self.decoder_blocks = nn.ModuleList(
            [
                HieraBlock(
                    dim=decoder_embed_dim,
                    dim_out=decoder_embed_dim,
                    heads=decoder_num_heads,
                    norm_layer=norm_layer,
                    mlp_ratio=mlp_ratio,
                )
                for i in range(decoder_depth)
            ]
        )
        self.decoder_norm = norm_layer(decoder_embed_dim)

        self.pred_stride = patch_stride[-1] * (
            self.q_stride[-1] ** self.q_pool
        )  # patch stride of prediction

        self.decoder_pred = nn.Linear(
            decoder_embed_dim,
            (self.pred_stride ** min(2, len(self.q_stride))) * in_chans,
        )  # predictor
        # --------------------------------------------------------------------------

        self.initialize_weights()

    def initialize_weights(self):
        nn.init.trunc_normal_(self.mask_token, std=0.02)
        nn.init.trunc_normal_(self.decoder_pos_embed, std=0.02)
        self.apply(self._mae_init_weights)

        # initialize patch_embed like nn.Linear (instead of nn.Conv2d)
        w = self.patch_embed.proj.weight.data
        nn.init.xavier_uniform_(w.view([w.shape[0], -1]))

    def _mae_init_weights(self, m: nn.Module):
        if isinstance(m, nn.Linear):
            nn.init.xavier_uniform_(m.weight)
            if m.bias is not None:
                nn.init.constant_(m.bias, 0)
        elif isinstance(m, nn.LayerNorm):
            nn.init.constant_(m.bias, 0)
            nn.init.constant_(m.weight, 1.0)

    def get_pixel_label_2d(
        self, input_img: torch.Tensor, mask: torch.Tensor, norm: bool = True
    ) -> torch.Tensor:
        # mask (boolean tensor): True must correspond to *masked*
        input_img = input_img.permute(0, 2, 3, 1)

        size = self.pred_stride
        label = input_img.unfold(1, size, size).unfold(2, size, size)
        label = label.flatten(1, 2).flatten(2)
        label = label[mask]
        if norm:
            mean = label.mean(dim=-1, keepdim=True)
            var = label.var(dim=-1, keepdim=True)
            label = (label - mean) / (var + 1.0e-6) ** 0.5

        return label

    def get_pixel_label_3d(
        self, input_vid: torch.Tensor, mask: torch.Tensor, norm: bool = True
    ) -> torch.Tensor:
        # mask (boolean tensor): True must correspond to *masked*

        # We use time strided loss, only take the first frame from each token
        input_vid = input_vid[:, :, ::self.patch_stride[0], :, :]

        size = self.pred_stride
        label = input_vid.unfold(3, size, size).unfold(4, size, size)
        label = label.permute(0, 2, 3, 4, 5, 6, 1)  # Different from 2d, mistake during training lol
        label = label.flatten(1, 3).flatten(2)
        label = label[mask]

        if norm:
            mean = label.mean(dim=-1, keepdim=True)
            var = label.var(dim=-1, keepdim=True)
            label = (label - mean) / (var + 1.0e-6) ** 0.5

        return label


    def forward_encoder(
        self, x: torch.Tensor, mask_ratio: float, mask: Optional[torch.Tensor] = None
    ) -> Tuple[torch.Tensor, torch.Tensor]:

        if mask is None:
            mask = self.get_random_mask(x, mask_ratio)  # [B, #MUs_all]

        # Get multi-scale representations from encoder
        _, intermediates = super().forward(x, mask, return_intermediates=True)
        # Resolution unchanged after q_pool stages, so skip those features
        intermediates = intermediates[: self.q_pool] + intermediates[-1:]

        # Multi-scale fusion
        x = 0.0
        for head, interm_x in zip(self.multi_scale_fusion_heads, intermediates):
            x += apply_fusion_head(head, interm_x)

        x = self.encoder_norm(x)

        return x, mask

    def forward_decoder(
        self, x: torch.Tensor, mask: torch.Tensor
    ) -> Tuple[torch.Tensor, torch.Tensor]:
        # Embed tokens
        x = self.decoder_embed(x)

        # Combine visible and mask tokens

        # x: [B, #MUs, *mask_unit_spatial_shape_final, encoder_dim_out]
        # mask: [B, #MUs_all]
        x_dec = torch.zeros(*mask.shape, *x.shape[2:], device=x.device, dtype=x.dtype)
        mask_tokens = self.mask_token.view(
            (1,) * (len(mask.shape) + len(x.shape[2:-1])) + (-1,)
        )
        mask = mask.reshape(mask.shape + (1,) * len(x.shape[2:]))
        mask = mask.expand((-1,) * 2 + x.shape[2:]).bool()
        x_dec[mask] = x.flatten()
        x_dec = ~mask * mask_tokens + mask * x_dec

        # Get back spatial order
        x = undo_windowing(
            x_dec,
            self.tokens_spatial_shape_final,
            self.mask_unit_spatial_shape_final,
        )
        mask = undo_windowing(
            mask[..., 0:1],
            self.tokens_spatial_shape_final,
            self.mask_unit_spatial_shape_final,
        )

        # Flatten
        x = x.reshape(x.shape[0], -1, x.shape[-1])
        mask = mask.view(x.shape[0], -1)

        # Add pos embed
        x = x + self.decoder_pos_embed

        # Apply decoder blocks
        for blk in self.decoder_blocks:
            x = blk(x)
        x = self.decoder_norm(x)

        # Predictor projection
        x = self.decoder_pred(x)

        return x, mask

    def forward_loss(
        self, x: torch.Tensor, pred: torch.Tensor, mask: torch.Tensor
    ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
        """
        Note: in mask, 0 is *visible*, 1 is *masked*

        x: e.g. [B, 3, H, W]
        pred: [B * num_pred_tokens, num_pixels_in_pred_patch * in_chans]
        label: [B * num_pred_tokens, num_pixels_in_pred_patch * in_chans]
        """
        if len(self.q_stride) == 2:
            label = self.get_pixel_label_2d(x, mask)
        elif len(self.q_stride) == 3:
            label = self.get_pixel_label_3d(x, mask)
        else:
            raise NotImplementedError

        pred = pred[mask]
        loss = (pred - label) ** 2

        return loss.mean(), pred, label

    def forward(
        self,
        x: torch.Tensor,
        mask_ratio: float = 0.6,
        mask: Optional[torch.Tensor] = None,
    ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:

        latent, mask = self.forward_encoder(x, mask_ratio, mask=mask)
        pred, pred_mask = self.forward_decoder(
            latent, mask
        )  # pred_mask is mask at resolution of *prediction*

        # Toggle mask, to generate labels for *masked* tokens
        return *self.forward_loss(x, pred, ~pred_mask), mask




# Image Models

@pretrained_model({
    "mae_in1k": "https://huggingface.co/merve/hiera-tiny-224-in1k/resolve/main/mae_hiera_tiny_224.pth",
}, default="mae_in1k")
def mae_hiera_tiny_224(**kwargs):
    return MaskedAutoencoderHiera(
        embed_dim=96, num_heads=1, stages=(1, 2, 7, 2), q_pool=2, **kwargs,
    )


@pretrained_model({
    "mae_in1k": "https://huggingface.co/merve/hiera-small-224-in1k/resolve/main/mae_hiera_small_224.pth",
}, default="mae_in1k")
def mae_hiera_small_224(**kwargs):
    return MaskedAutoencoderHiera(
        embed_dim=96, num_heads=1, stages=(1, 2, 11, 2), q_pool=2, **kwargs,
    )


@pretrained_model({
    "mae_in1k": "https://dl.fbaipublicfiles.com/hiera/mae_hiera_base_224.pth",
}, default="mae_in1k")
def mae_hiera_base_224(**kwargs):
    return MaskedAutoencoderHiera(
        embed_dim=96, num_heads=1, stages=(2, 3, 16, 3), q_pool=2, **kwargs,
    )


@pretrained_model({
    "mae_in1k": "https://dl.fbaipublicfiles.com/hiera/mae_hiera_base_plus_224.pth",
}, default="mae_in1k")
def mae_hiera_base_plus_224(**kwargs):
    return MaskedAutoencoderHiera(
        embed_dim=112, num_heads=2, stages=(2, 3, 16, 3), q_pool=2, **kwargs,
    )


@pretrained_model({
    "mae_in1k": "https://dl.fbaipublicfiles.com/hiera/mae_hiera_large_224.pth",
}, default="mae_in1k")
def mae_hiera_large_224(**kwargs):
    return MaskedAutoencoderHiera(
        embed_dim=144, num_heads=2, stages=(2, 6, 36, 4), q_pool=2, **kwargs,
    )


@pretrained_model({
    "mae_in1k": "https://dl.fbaipublicfiles.com/hiera/mae_hiera_huge_224.pth",
}, default="mae_in1k")
def mae_hiera_huge_224(**kwargs):
    return MaskedAutoencoderHiera(
        embed_dim=256, num_heads=4, stages=(2, 6, 36, 4), q_pool=2, **kwargs,
    )



# Video Models

@pretrained_model({
    "mae_k400": "https://dl.fbaipublicfiles.com/hiera/mae_hiera_base_16x224.pth",
}, default="mae_k400")
def mae_hiera_base_16x224(num_classes: int = 400, **kwdargs):
    return MaskedAutoencoderHiera(
        num_classes=num_classes,  # K400 has 400 classes
        input_size=(16, 224, 224),
        q_stride=(1, 2, 2),
        mask_unit_size=(1, 8, 8),
        patch_kernel=(3, 7, 7),
        patch_stride=(2, 4, 4),
        patch_padding=(1, 3, 3),
        sep_pos_embed=True,
        q_pool=2,
        **kwdargs
    )


@pretrained_model({
    "mae_k400": "https://dl.fbaipublicfiles.com/hiera/mae_hiera_base_plus_16x224.pth",
}, default="mae_k400")
@pretrained_model(None)
def mae_hiera_base_plus_16x224(**kwdargs):
    return mae_hiera_base_16x224(
        embed_dim=112, num_heads=2, stages=(2, 3, 16, 3), **kwdargs
    )


@pretrained_model({
    "mae_k400": "https://dl.fbaipublicfiles.com/hiera/mae_hiera_large_16x224.pth",
}, default="mae_k400")
@pretrained_model(None)
def mae_hiera_large_16x224(**kwdargs):
    return mae_hiera_base_16x224(
        embed_dim=144, num_heads=2, stages=(2, 6, 36, 4), **kwdargs
    )


@pretrained_model({
    "mae_k400": "https://dl.fbaipublicfiles.com/hiera/mae_hiera_huge_16x224.pth",
}, default="mae_k400")
def mae_hiera_huge_16x224(**kwdargs):
    return mae_hiera_base_16x224(
        embed_dim=256, num_heads=4, stages=(2, 6, 36, 4), **kwdargs
    )