File size: 18,635 Bytes
e5d3156
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.

# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
# --------------------------------------------------------
#
# Hiera: A Hierarchical Vision Transformer without the Bells-and-Whistles
#
# Chaitanya Ryali, Yuan-Ting Hu, Daniel Bolya, Chen Wei, Haoqi Fan,
# Po-Yao Huang, Vaibhav Aggarwal, Arkabandhu Chowdhury, Omid Poursaeed,
# Judy Hoffman, Jitendra Malik, Yanghao Li, Christoph Feichtenhofer.
#
# Paper: https://arxiv.org/abs/2306.00989/
#
# References:
# slowfast: https://github.com/facebookresearch/SlowFast
# timm: https://github.com/rwightman/pytorch-image-models/tree/master/timm
# --------------------------------------------------------

import math
from functools import partial
from typing import List, Tuple, Callable, Optional

import torch
import torch.nn as nn
import torch.nn.functional as F

from timm.models.layers import DropPath, Mlp

from .hiera_utils import pretrained_model, conv_nd, do_pool, do_masked_conv, Unroll, Reroll



class MaskUnitAttention(nn.Module):
    """
    Computes either Mask Unit or Global Attention. Also is able to perform q pooling.

    Note: this assumes the tokens have already been flattened and unrolled into mask units.
    See `Unroll` for more details.
    """

    def __init__(
        self,
        dim: int,
        dim_out: int,
        heads: int,
        q_stride: int = 1,
        window_size: int = 0,
        use_mask_unit_attn: bool = False,
    ):
        """
        Args:
        - dim, dim_out: The input and output feature dimensions.
        - heads: The number of attention heads.
        - q_stride: If greater than 1, pool q with this stride. The stride should be flattened (e.g., 2x2 = 4).
        - window_size: The current (flattened) size of a mask unit *after* pooling (if any).
        - use_mask_unit_attn: Use Mask Unit or Global Attention.
        """
        super().__init__()

        self.dim = dim
        self.dim_out = dim_out
        self.heads = heads
        self.q_stride = q_stride

        self.head_dim = dim_out // heads
        self.scale = (self.head_dim) ** -0.5

        self.qkv = nn.Linear(dim, 3 * dim_out)
        self.proj = nn.Linear(dim_out, dim_out)

        self.window_size = window_size
        self.use_mask_unit_attn = use_mask_unit_attn

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        """ Input should be of shape [batch, tokens, channels]. """
        B, N, _ = x.shape
        num_windows = (
            (N // (self.q_stride * self.window_size)) if self.use_mask_unit_attn else 1
        )

        qkv = (
            self.qkv(x)
            .reshape(B, -1, num_windows, 3, self.heads, self.head_dim)
            .permute(3, 0, 4, 2, 1, 5)
        )
        q, k, v = qkv[0], qkv[1], qkv[2]

        if self.q_stride > 1:
            # Refer to Unroll to see how this performs a maxpool-Nd
            q = (
                q.view(B, self.heads, num_windows, self.q_stride, -1, self.head_dim)
                .max(dim=3)
                .values
            )

        if hasattr(F, "scaled_dot_product_attention"):
            # Note: the original paper did *not* use SDPA, it's a free boost!
            x = F.scaled_dot_product_attention(q, k, v)
        else:
            attn = (q * self.scale) @ k.transpose(-1, -2)
            attn = attn.softmax(dim=-1)
            x = (attn @ v)

        x = x.transpose(1, 3).reshape(B, -1, self.dim_out)
        x = self.proj(x)
        return x


class HieraBlock(nn.Module):
    def __init__(
        self,
        dim: int,
        dim_out: int,
        heads: int,
        mlp_ratio: float = 4.0,
        drop_path: float = 0.0,
        norm_layer: nn.Module = nn.LayerNorm,
        act_layer: nn.Module = nn.GELU,
        q_stride: int = 1,
        window_size: int = 0,
        use_mask_unit_attn: bool = False,
    ):
        super().__init__()

        self.dim = dim
        self.dim_out = dim_out

        self.norm1 = norm_layer(dim)
        self.attn = MaskUnitAttention(
            dim, dim_out, heads, q_stride, window_size, use_mask_unit_attn
        )

        self.norm2 = norm_layer(dim_out)
        self.mlp = Mlp(dim_out, int(dim_out * mlp_ratio), act_layer=act_layer)

        self.drop_path = DropPath(drop_path) if drop_path > 0 else nn.Identity()
        if dim != dim_out:
            self.proj = nn.Linear(dim, dim_out)

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        # Attention + Q Pooling
        x_norm = self.norm1(x)
        if self.dim != self.dim_out:
            x = do_pool(self.proj(x_norm), stride=self.attn.q_stride)
        x = x + self.drop_path(self.attn(x_norm))

        # MLP
        x = x + self.drop_path(self.mlp(self.norm2(x)))
        return x


class Head(nn.Module):
    def __init__(
        self,
        dim: int,
        num_classes: int,
        dropout_rate: float = 0.0,
        act_func: Callable[[torch.Tensor], torch.Tensor] = lambda x: x.softmax(dim=-1),
    ):
        super().__init__()
        self.dropout = nn.Dropout(dropout_rate) if dropout_rate > 0 else nn.Identity()
        self.projection = nn.Linear(dim, num_classes)
        # act_fun for eval and testing only
        self.act_func = act_func

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        x = self.dropout(x)
        x = self.projection(x)
        if not self.training:
            x = self.act_func(x)
        return x


class PatchEmbed(nn.Module):
    """Patch embed that supports any number of spatial dimensions (1d, 2d, 3d)."""

    def __init__(
        self,
        dim_in: int,
        dim_out: int,
        kernel: Tuple[int, ...],
        stride: Tuple[int, ...],
        padding: Tuple[int, ...],
    ):
        super().__init__()

        # Support any number of spatial dimensions
        self.spatial_dims = len(kernel)
        self.proj = conv_nd(self.spatial_dims)(
            dim_in,
            dim_out,
            kernel_size=kernel,
            stride=stride,
            padding=padding,
        )

    def forward(
        self, x: torch.Tensor, mask: Optional[torch.Tensor] = None
    ) -> torch.Tensor:
        x = do_masked_conv(x, self.proj, mask)
        x = x.reshape(x.shape[0], x.shape[1], -1).transpose(2, 1)
        return x


class Hiera(nn.Module):
    def __init__(
        self,
        input_size: Tuple[int, ...] = (224, 224),
        in_chans: int = 3,
        embed_dim: int = 96,  # initial embed dim
        num_heads: int = 1,  # initial number of heads
        num_classes: int = 1000,
        stages: Tuple[int, ...] = (2, 3, 16, 3),
        q_pool: int = 3,  # number of q_pool stages
        q_stride: Tuple[int, ...] = (2, 2),
        mask_unit_size: Tuple[int, ...] = (8, 8),  # must divide q_stride ** (#stages-1)
        # mask_unit_attn: which stages use mask unit attention?
        mask_unit_attn: Tuple[bool, ...] = (True, True, False, False),
        dim_mul: float = 2.0,
        head_mul: float = 2.0,
        patch_kernel: Tuple[int, ...] = (7, 7),
        patch_stride: Tuple[int, ...] = (4, 4),
        patch_padding: Tuple[int, ...] = (3, 3),
        mlp_ratio: float = 4.0,
        drop_path_rate: float = 0.0,
        norm_layer: nn.Module = partial(nn.LayerNorm, eps=1e-6),
        head_dropout: float = 0.0,
        head_init_scale: float = 0.001,
        sep_pos_embed: bool = False,
    ):
        super().__init__()

        depth = sum(stages)
        self.patch_stride = patch_stride
        self.tokens_spatial_shape = [i // s for i, s in zip(input_size, patch_stride)]
        num_tokens = math.prod(self.tokens_spatial_shape)
        flat_mu_size = math.prod(mask_unit_size)
        flat_q_stride = math.prod(q_stride)

        assert q_pool < len(stages)
        self.q_pool, self.q_stride = q_pool, q_stride
        self.mu_size, self.mask_unit_size = flat_mu_size, mask_unit_size
        self.mask_spatial_shape = [
            i // s for i, s in zip(self.tokens_spatial_shape, self.mask_unit_size)
        ]
        self.stage_ends = [sum(stages[:i]) - 1 for i in range(1, len(stages) + 1)]

        self.patch_embed = PatchEmbed(
            in_chans, embed_dim, patch_kernel, patch_stride, patch_padding
        )

        self.sep_pos_embed = sep_pos_embed
        if sep_pos_embed:
            self.pos_embed_spatial = nn.Parameter(
                torch.zeros(
                    1,
                    self.tokens_spatial_shape[1] * self.tokens_spatial_shape[2],
                    embed_dim,
                )
            )
            self.pos_embed_temporal = nn.Parameter(
                torch.zeros(1, self.tokens_spatial_shape[0], embed_dim)
            )
        else:
            self.pos_embed = nn.Parameter(torch.zeros(1, num_tokens, embed_dim))

        # Setup roll and reroll modules
        self.unroll = Unroll(
            input_size, patch_stride, [q_stride] * len(self.stage_ends[:-1])
        )
        self.reroll = Reroll(
            input_size,
            patch_stride,
            [q_stride] * len(self.stage_ends[:-1]),
            self.stage_ends,
            q_pool,
        )
        # q_pool locations
        q_pool_blocks = [x + 1 for x in self.stage_ends[:q_pool]]
        # stochastic depth decay rule
        dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)]

        # Transformer blocks
        cur_stage = 0
        self.blocks = nn.ModuleList()

        for i in range(depth):
            dim_out = embed_dim
            # Mask unit or global attention.
            # Lag by 1 block, so that global attention,
            # applied post pooling on lower resolution
            use_mask_unit_attn = mask_unit_attn[cur_stage]

            if i - 1 in self.stage_ends:
                dim_out = int(embed_dim * dim_mul)
                num_heads = int(num_heads * head_mul)
                cur_stage += 1
                if i in q_pool_blocks:
                    flat_mu_size //= flat_q_stride

            block = HieraBlock(
                dim=embed_dim,
                dim_out=dim_out,
                heads=num_heads,
                mlp_ratio=mlp_ratio,
                drop_path=dpr[i],
                norm_layer=norm_layer,
                q_stride=(flat_q_stride if i in q_pool_blocks else 1),
                window_size=flat_mu_size,
                use_mask_unit_attn=use_mask_unit_attn,
            )

            embed_dim = dim_out
            self.blocks.append(block)

        self.norm = norm_layer(embed_dim)
        self.head = Head(embed_dim, num_classes, dropout_rate=head_dropout)

        # Initialize everything
        if sep_pos_embed:
            nn.init.trunc_normal_(self.pos_embed_spatial, std=0.02)
            nn.init.trunc_normal_(self.pos_embed_temporal, std=0.02)
        else:
            nn.init.trunc_normal_(self.pos_embed, std=0.02)
        self.apply(partial(self._init_weights))
        self.head.projection.weight.data.mul_(head_init_scale)
        self.head.projection.bias.data.mul_(head_init_scale)

    def _init_weights(self, m, init_bias=0.02):
        if isinstance(m, (nn.Linear, nn.Conv1d, nn.Conv2d, nn.Conv3d)):
            nn.init.trunc_normal_(m.weight, std=0.02)
            if isinstance(m, nn.Linear) and m.bias is not None:
                nn.init.constant_(m.bias, init_bias)
        elif isinstance(m, nn.LayerNorm):
            nn.init.constant_(m.bias, init_bias)
            nn.init.constant_(m.weight, 1.0)

    @torch.jit.ignore
    def no_weight_decay(self):
        if self.sep_pos_embed:
            return ["pos_embed_spatial", "pos_embed_temporal"]
        else:
            return ["pos_embed"]

    def get_random_mask(self, x: torch.Tensor, mask_ratio: float) -> torch.Tensor:
        """
        Generates a random mask, mask_ratio fraction are dropped.
        1 is *keep*, 0 is *remove*. Useful for MAE, FLIP, etc.
        """
        B = x.shape[0]
        # Tokens selected for masking at mask unit level
        num_windows = math.prod(self.mask_spatial_shape)  # num_mask_units
        len_keep = int(num_windows * (1 - mask_ratio))
        noise = torch.rand(B, num_windows, device=x.device)

        # Sort noise for each sample
        ids_shuffle = torch.argsort(
            noise, dim=1
        )  # ascend: small is keep, large is remove
        ids_restore = torch.argsort(ids_shuffle, dim=1)

        # Generate the binary mask: 1 is *keep*, 0 is *remove*
        # Note this is opposite to original MAE
        mask = torch.zeros([B, num_windows], device=x.device)
        mask[:, :len_keep] = 1
        # Unshuffle to get the binary mask
        mask = torch.gather(mask, dim=1, index=ids_restore)

        return mask.bool()

    def get_pos_embed(self) -> torch.Tensor:
        if self.sep_pos_embed:
            return self.pos_embed_spatial.repeat(
                1, self.tokens_spatial_shape[0], 1
            ) + torch.repeat_interleave(
                self.pos_embed_temporal,
                self.tokens_spatial_shape[1] * self.tokens_spatial_shape[2],
                dim=1,
            )
        else:
            return self.pos_embed

    def forward(
        self,
        x: torch.Tensor,
        mask: torch.Tensor = None,
        return_intermediates: bool = False,
    ) -> torch.Tensor:
        """
        mask should be a boolean tensor of shape [B, #MUt*#MUy*#MUx] where #MU are the number of mask units in that dim.
        Note: 1 in mask is *keep*, 0 is *remove*; mask.sum(dim=-1) should be the same across the batch.
        """
        # Slowfast training passes in a list
        if isinstance(x, list):
            x = x[0]
        intermediates = []

        x = self.patch_embed(
            x,
            mask=mask.view(
                x.shape[0], 1, *self.mask_spatial_shape
            )  # B, C, *mask_spatial_shape
            if mask is not None
            else None,
        )
        x = x + self.get_pos_embed()
        x = self.unroll(x)

        # Discard masked tokens
        if mask is not None:
            x = x[mask[..., None].tile(1, self.mu_size, x.shape[2])].view(
                x.shape[0], -1, x.shape[-1]
            )

        for i, blk in enumerate(self.blocks):
            x = blk(x)

            if return_intermediates and i in self.stage_ends:
                intermediates.append(self.reroll(x, i, mask=mask))

        if mask is None:
            x = x.mean(dim=1)
            x = self.norm(x)
            x = self.head(x)

        # x may not always be in spatial order here.
        # e.g. if q_pool = 2, mask_unit_size = (8, 8), and
        # q_stride = (2, 2), not all unrolls were consumed,
        # intermediates[-1] is x in spatial order
        if return_intermediates:
            return x, intermediates

        return x


# Image models

@pretrained_model({
    "mae_in1k_ft_in1k": "https://huggingface.co/merve/hiera-tiny-ft-224-in1k/resolve/main/hiera_tiny_224.pth",
    "mae_in1k": "https://huggingface.co/merve/hiera-tiny-224-in1k/resolve/main/mae_hiera_tiny_224.pth",
}, default="mae_in1k_ft_in1k")
def hiera_tiny_224(**kwdargs):
    return Hiera(embed_dim=96, num_heads=1, stages=(1, 2, 7, 2), **kwdargs)


@pretrained_model({
    "mae_in1k_ft_in1k": "https://huggingface.co/merve/hiera-small-ft-224-in1k/resolve/main/hiera_small_224.pth",
    "mae_in1k": "https://huggingface.co/merve/hiera-small-224-in1k/resolve/main/mae_hiera_small_224.pth",
}, default="mae_in1k_ft_in1k")
def hiera_small_224(**kwdargs):
    return Hiera(embed_dim=96, num_heads=1, stages=(1, 2, 11, 2), **kwdargs)


@pretrained_model({
    "mae_in1k_ft_in1k": "https://dl.fbaipublicfiles.com/hiera/hiera_base_224.pth",
    "mae_in1k": "https://dl.fbaipublicfiles.com/hiera/mae_hiera_base_224.pth",
}, default="mae_in1k_ft_in1k")
def hiera_base_224(**kwdargs):
    return Hiera(embed_dim=96, num_heads=1, stages=(2, 3, 16, 3), **kwdargs)


@pretrained_model({
    "mae_in1k_ft_in1k": "https://dl.fbaipublicfiles.com/hiera/hiera_base_plus_224.pth",
    "mae_in1k": "https://dl.fbaipublicfiles.com/hiera/mae_hiera_base_plus_224.pth",
}, default="mae_in1k_ft_in1k")
def hiera_base_plus_224(**kwdargs):
    return Hiera(embed_dim=112, num_heads=2, stages=(2, 3, 16, 3), **kwdargs)


@pretrained_model({
    "mae_in1k_ft_in1k": "https://dl.fbaipublicfiles.com/hiera/hiera_large_224.pth",
    "mae_in1k": "https://dl.fbaipublicfiles.com/hiera/mae_hiera_large_224.pth",
}, default="mae_in1k_ft_in1k")
def hiera_large_224(**kwdargs):
    return Hiera(embed_dim=144, num_heads=2, stages=(2, 6, 36, 4), **kwdargs)


@pretrained_model({
    "mae_in1k_ft_in1k": "https://dl.fbaipublicfiles.com/hiera/hiera_huge_224.pth",
    "mae_in1k": "https://dl.fbaipublicfiles.com/hiera/mae_hiera_huge_224.pth",
}, default="mae_in1k_ft_in1k")
def hiera_huge_224(**kwdargs):
    return Hiera(embed_dim=256, num_heads=4, stages=(2, 6, 36, 4), **kwdargs)


# Video models

@pretrained_model({
    "mae_k400_ft_k400": "https://dl.fbaipublicfiles.com/hiera/hiera_base_16x224.pth",
    "mae_k400": "https://dl.fbaipublicfiles.com/hiera/mae_hiera_base_16x224.pth",
}, default="mae_k400_ft_k400")
def hiera_base_16x224(num_classes: int = 400, **kwdargs):
    return Hiera(
        num_classes=num_classes,  # K400 has 400 classes
        input_size=(16, 224, 224),
        q_stride=(1, 2, 2),
        mask_unit_size=(1, 8, 8),
        patch_kernel=(3, 7, 7),
        patch_stride=(2, 4, 4),
        patch_padding=(1, 3, 3),
        sep_pos_embed=True,
        **kwdargs
    )


@pretrained_model({
    "mae_k400_ft_k400": "https://dl.fbaipublicfiles.com/hiera/hiera_base_plus_16x224.pth",
    "mae_k400": "https://dl.fbaipublicfiles.com/hiera/mae_hiera_base_plus_16x224.pth",
}, default="mae_k400_ft_k400")
def hiera_base_plus_16x224(**kwdargs):
    return hiera_base_16x224(
        embed_dim=112, num_heads=2, stages=(2, 3, 16, 3), **kwdargs
    )


@pretrained_model({
    "mae_k400_ft_k400": "https://dl.fbaipublicfiles.com/hiera/hiera_large_16x224.pth",
    "mae_k400": "https://dl.fbaipublicfiles.com/hiera/mae_hiera_large_16x224.pth",
}, default="mae_k400_ft_k400")
def hiera_large_16x224(**kwdargs):
    return hiera_base_16x224(
        embed_dim=144, num_heads=2, stages=(2, 6, 36, 4), **kwdargs
    )


@pretrained_model({
    "mae_k400_ft_k400": "https://dl.fbaipublicfiles.com/hiera/hiera_huge_16x224.pth",
    "mae_k400": "https://dl.fbaipublicfiles.com/hiera/mae_hiera_huge_16x224.pth",
}, default="mae_k400_ft_k400")
def hiera_huge_16x224(**kwdargs):
    return hiera_base_16x224(
        embed_dim=256, num_heads=4, stages=(2, 6, 36, 4), **kwdargs
    )