Text Generation
PEFT
Safetensors
mistral
conversational
File size: 8,178 Bytes
c87cf68
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
---
license: apache-2.0
library_name: peft
tags:
- mistral
datasets:
- jondurbin/airoboros-2.2.1
- Open-Orca/SlimOrca
- garage-bAInd/Open-Platypus
inference: false
pipeline_tag: text-generation
base_model: mistralai/Mistral-7B-v0.1
---

<div align="center">

<img src="./logo.png" width="110px">

</div>


# Mistral-7B-Instruct-v0.2

A pretrained generative language model with 7 billion parameters geared towards instruction-following capabilities.

## Model Details

This model was built via parameter-efficient finetuning of the [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) base model on the first 20k rows in each of the [jondurbin/airoboros-2.2.1](https://huggingface.co/datasets/jondurbin/airoboros-2.2.1), [Open-Orca/SlimOrca](https://huggingface.co/datasets/Open-Orca/SlimOrca), and [garage-bAInd/Open-Platypus](https://huggingface.co/datasets/garage-bAInd/Open-Platypus) datasets.

- **Developed by:** Daniel Furman
- **Model type:** Causal language model (clm)
- **Language(s) (NLP):** English
- **License:** Apache 2.0
- **Finetuned from model:** [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1)

## Model Sources 

- **Repository:** [here](https://github.com/daniel-furman/sft-demos/blob/main/src/sft/mistral/sft_Mistral_7B_Instruct_v0_1_peft.ipynb)

## Evaluation Results

| Metric                | Value |
|-----------------------|-------|
| MMLU (5-shot)         | Coming |
| ARC (25-shot)         | Coming |
| HellaSwag (10-shot)   | Coming |
| TruthfulQA (0-shot)   | Coming |
| Avg.                  | Coming |

We use Eleuther.AI's [Language Model Evaluation Harness](https://github.com/EleutherAI/lm-evaluation-harness) to run the benchmark tests above, the same version as Hugging Face's [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard).

## Basic Usage

<details>

<summary>Setup</summary>

```python
!pip install -q -U transformers peft torch accelerate einops sentencepiece
```

```python
import torch
from peft import PeftModel, PeftConfig
from transformers import (
    AutoModelForCausalLM,
    AutoTokenizer,
)
```

```python
peft_model_id = "dfurman/Mistral-7B-Instruct-v0.2"
config = PeftConfig.from_pretrained(peft_model_id)

tokenizer = AutoTokenizer.from_pretrained(
    peft_model_id,
    use_fast=True,
    trust_remote_code=True,
)

model = AutoModelForCausalLM.from_pretrained(
    config.base_model_name_or_path,
    torch_dtype=torch.float16,
    device_map="auto",
    trust_remote_code=True,
)

model = PeftModel.from_pretrained(
    model, 
    peft_model_id
)
```

</details>


```python
messages = [
    {"role": "user", "content": "Tell me a recipe for a mai tai."},
]

print("\n\n*** Prompt:")
input_ids = tokenizer.apply_chat_template(
    messages,
    tokenize=True,
    return_tensors="pt",
)
print(tokenizer.decode(input_ids[0]))

print("\n\n*** Generate:")
with torch.autocast("cuda", dtype=torch.bfloat16):
    output = model.generate(
        input_ids=input_ids.cuda(),
        max_new_tokens=1024,
        do_sample=True,
        temperature=0.7,
        return_dict_in_generate=True,
        eos_token_id=tokenizer.eos_token_id,
        pad_token_id=tokenizer.pad_token_id,
        repetition_penalty=1.2,
        no_repeat_ngram_size=5,
    )

response = tokenizer.decode(
    output["sequences"][0][len(input_ids[0]):], 
    skip_special_tokens=True
)
print(response)
```

<details>

<summary>Outputs</summary>

**Prompt**:

```python
"<s> [INST] Tell me a recipe for a mai tai. [/INST]"
```

**Generation**:

```python
"""1. Combine the following ingredients in a cocktail shaker:
2 oz light rum (or white rum)
1 oz dark rum
0.5 oz orange curacao or triple sec
0.75 oz lime juice, freshly squeezed
0.5 tbsp simple syrup (optional; if you like your drinks sweet)
Few drops of bitters (Angostura is traditional but any will do)
Ice cubes to fill the shaker

2. Shake vigorously until well-chilled and combined.
3. Strain into an ice-filled glass.
4. Garnish with a slice of lime or an orange wedge, if desired."""
```

</details>


## Speeds, Sizes, Times 

| runtime / 50 tokens (sec) | GPU  | dtype | VRAM (GB) |
|:-----------------------------:|:---------------------:|:-------------:|:-----------------------:|
| 3.21                          | 1x A100 (40 GB SXM)                | torch.bfloat16    | 16                    |

## Training

It took ~5 hours to train 3 epochs on 1x A100 (40 GB SXM).

### Prompt Format

This model was finetuned with the following format:

```python
tokenizer.chat_template = "{{ bos_token }}{% for message in messages %}{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}{% endif %}{% if message['role'] == 'user' %}{{ '[INST] ' + message['content'] + ' [/INST] ' }}{% elif message['role'] == 'assistant' %}{{ message['content'] + eos_token + ' ' }}{% else %}{{ raise_exception('Only user and assistant roles are supported!') }}{% endif %}{% endfor %}"
```

This format is available as a [chat template](https://huggingface.co/docs/transformers/main/chat_templating) via the `apply_chat_template()` method. Here's an illustrative example:

```python
messages = [
    {"role": "user", "content": "Tell me a recipe for a mai tai."},
    {"role": "assistant", "content": "1 oz light rum\n½ oz dark rum\n¼ oz orange curaçao\n2 oz pineapple juice\n¾ oz lime juice\nDash of orgeat syrup (optional)\nSplash of grenadine (for garnish, optional)\nLime wheel and cherry garnishes (optional)\n\nShake all ingredients except the splash of grenadine in a cocktail shaker over ice. Strain into an old-fashioned glass filled with fresh ice cubes. Gently pour the splash of grenadine down the side of the glass so that it sinks to the bottom. Add garnishes as desired."},
    {"role": "user", "content": "How can I make it more upscale and luxurious?"},
]

print("\n\n*** Prompt:")
input_ids = tokenizer.apply_chat_template(
    messages,
    tokenize=True,
    return_tensors="pt",
)
print(tokenizer.decode(input_ids[0]))
```

<details>

<summary>Output</summary>

```python
"""<s> [INST] Tell me a recipe for a mai tai. [/INST] 1 oz light rum\n½ oz dark rum\n (...) Add garnishes as desired.</s>  [INST] How can I make it more upscale and luxurious? [/INST]"""
```
</details>

### Training Hyperparameters


We use the [SFTTrainer](https://huggingface.co/docs/trl/main/en/sft_trainer) from `trl` to fine-tune LLMs on instruction-following datasets.

See [here](https://github.com/daniel-furman/sft-demos/blob/main/src/sft/mistral/sft_Mistral_7B_Instruct_v0_1_peft.ipynb) for the finetuning code, which contains an exhaustive view of the hyperparameters employed.

The following `TrainingArguments` config was used:

- output_dir = "./results"
- num_train_epochs = 2
- auto_find_batch_size = True
- gradient_accumulation_steps = 2
- optim = "paged_adamw_32bit"
- save_strategy = "epoch"
- learning_rate = 3e-4
- lr_scheduler_type = "cosine"
- warmup_ratio = 0.03
- logging_strategy = "steps"
- logging_steps = 25
- evaluation_strategy = "no"
- bf16 = True

The following `bitsandbytes` quantization config was used:

- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: False
- bnb_4bit_compute_dtype: bfloat16


## Model Card Contact

dryanfurman at gmail

## Mistral Research Citation

```
@misc{jiang2023mistral,
      title={Mistral 7B}, 
      author={Albert Q. Jiang and Alexandre Sablayrolles and Arthur Mensch and Chris Bamford and Devendra Singh Chaplot and Diego de las Casas and Florian Bressand and Gianna Lengyel and Guillaume Lample and Lucile Saulnier and Lélio Renard Lavaud and Marie-Anne Lachaux and Pierre Stock and Teven Le Scao and Thibaut Lavril and Thomas Wang and Timothée Lacroix and William El Sayed},
      year={2023},
      eprint={2310.06825},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}
```

## Framework versions


- PEFT 0.6.3.dev0