File size: 1,047 Bytes
180d0f0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 |
from transformers import Pipeline
import torch
import joblib
class CustomPipeline(Pipeline):
def __init__(self, model, tokenizer, device=-1, **kwargs):
super().__init__(model=model, tokenizer=tokenizer, device=device, **kwargs)
self.label_mapping = joblib.load("label_mapping.joblib")
def _sanitize_parameters(self, **kwargs):
return {}, {}, {}
def preprocess(self, inputs):
return self.tokenizer(inputs, return_tensors="pt", truncation=True, padding=True, max_length=512)
def _forward(self, model_inputs):
with torch.no_grad():
outputs = self.model(**model_inputs)
return outputs
def postprocess(self, model_outputs):
logits = model_outputs.logits
predicted_class = torch.argmax(logits, dim=1).item()
predicted_label = self.label_mapping[predicted_class]
confidence = torch.softmax(logits, dim=1)[0][predicted_class].item()
return {
"label": predicted_label,
"score": confidence
} |