menimeni123 commited on
Commit
180d0f0
1 Parent(s): 8f655f1
Files changed (3) hide show
  1. .DS_Store +0 -0
  2. README.md +14 -0
  3. handler.py +30 -0
.DS_Store CHANGED
Binary files a/.DS_Store and b/.DS_Store differ
 
README.md ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # DistilBERT for Text Classification
2
+
3
+ This repository contains a fine-tuned DistilBERT model for text classification. The model is designed to classify text into four categories: SAFE, JAILBREAK, INJECTION, and PHISHING.
4
+
5
+ ## Model Details
6
+
7
+ - Base model: DistilBERT (distilbert-base-uncased)
8
+ - Task: Sequence Classification
9
+ - Number of labels: 4
10
+ - Labels: SAFE, JAILBREAK, INJECTION, PHISHING
11
+
12
+ ## Usage
13
+
14
+ To use this model, you can leverage the Hugging Face Transformers library:
handler.py ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers import Pipeline
2
+ import torch
3
+ import joblib
4
+
5
+ class CustomPipeline(Pipeline):
6
+ def __init__(self, model, tokenizer, device=-1, **kwargs):
7
+ super().__init__(model=model, tokenizer=tokenizer, device=device, **kwargs)
8
+ self.label_mapping = joblib.load("label_mapping.joblib")
9
+
10
+ def _sanitize_parameters(self, **kwargs):
11
+ return {}, {}, {}
12
+
13
+ def preprocess(self, inputs):
14
+ return self.tokenizer(inputs, return_tensors="pt", truncation=True, padding=True, max_length=512)
15
+
16
+ def _forward(self, model_inputs):
17
+ with torch.no_grad():
18
+ outputs = self.model(**model_inputs)
19
+ return outputs
20
+
21
+ def postprocess(self, model_outputs):
22
+ logits = model_outputs.logits
23
+ predicted_class = torch.argmax(logits, dim=1).item()
24
+ predicted_label = self.label_mapping[predicted_class]
25
+ confidence = torch.softmax(logits, dim=1)[0][predicted_class].item()
26
+
27
+ return {
28
+ "label": predicted_label,
29
+ "score": confidence
30
+ }