File size: 6,525 Bytes
fbe59ff |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 |
callbacks:
rollout_lh:
_target_: mode.rollout.libero_rollout.RolloutLibero
_recursive_: false
env_cfg:
_target_: mode.wrappers.hulc_wrapper.HulcWrapper
skip_epochs: ${rollout_lh_skip_epochs}
benchmark_name: ${libero_benchmark}
rollout_freq: 10
num_videos: 0
num_sequences: 50
max_steps: 600
empty_cache: false
debug: false
n_eval: 20
num_procs: 10
use_mp: false
task_embedding_format: clip
device: ${device}
checkpoint:
_target_: pytorch_lightning.callbacks.ModelCheckpoint
save_top_k: 1
verbose: true
monitor: eval_lh/avg_seq_len
mode: max
dirpath: saved_models
filename: '{epoch:02d}_{eval_lh/avg_seq_len:.2f}'
every_n_epochs: ${callbacks.rollout_lh.rollout_freq}
ema:
_target_: mode.callbacks.ema.EMA
decay: 0.999
start_step: 0
save_ema_weights_in_callback_state: true
evaluate_ema_weights_instead: true
power: 0.6666666666666666
inv_gamma: 1.0
min_value: 0.0
max_value: 0.9999
datamodule:
datasets:
lang_dataset:
_target_: mode.datasets.libero_dataset.LiberoMultitaskDataset
key: lang
benchmark_name: ${libero_benchmark}
batch_size: ${batch_size}
proprio_state: ${datamodule.proprioception_dims}
obs_space: ${datamodule.observation_space}
num_workers: ${num_workers}
action_seq_len: ${act_seq_len}
obs_seq_len: ${obs_seq_len}
split_ratio: 0.0
transforms:
train:
rgb_static:
- _target_: torchvision.transforms.Resize
size: 224
antialias: true
- _target_: mode.utils.transforms.RandomShiftsAug
pad: 10
- _target_: mode.utils.transforms.ScaleImageTensor
- _target_: torchvision.transforms.Normalize
mean:
- 0.48145466
- 0.4578275
- 0.40821073
std:
- 0.26862954
- 0.26130258
- 0.27577711
rgb_gripper:
- _target_: torchvision.transforms.Resize
size: 112
antialias: true
- _target_: mode.utils.transforms.RandomShiftsAug
pad: 4
- _target_: mode.utils.transforms.ScaleImageTensor
- _target_: torchvision.transforms.Normalize
mean:
- 0.48145466
- 0.4578275
- 0.40821073
std:
- 0.26862954
- 0.26130258
- 0.27577711
val:
rgb_static:
- _target_: torchvision.transforms.Resize
size: 224
antialias: true
- _target_: mode.utils.transforms.ScaleImageTensor
- _target_: torchvision.transforms.Normalize
mean:
- 0.48145466
- 0.4578275
- 0.40821073
std:
- 0.26862954
- 0.26130258
- 0.27577711
rgb_gripper:
- _target_: torchvision.transforms.Resize
size: 112
antialias: true
- _target_: mode.utils.transforms.ScaleImageTensor
- _target_: torchvision.transforms.Normalize
mean:
- 0.48145466
- 0.4578275
- 0.40821073
std:
- 0.26862954
- 0.26130258
- 0.27577711
_target_: mode.datasets.libero_data_module.LiberoDataModule
_recursive_: false
root_data_dir: ${root_data_dir}
action_space: 7
shuffle_val: false
benchmark_name: ${libero_benchmark}
observation_space:
rgb_obs:
- agentview_rgb
- eye_in_hand_rgb
depth_obs: []
state_obs:
- gripper_states
- joint_states
actions:
- rel_actions
language:
- language
proprioception_dims: None
model:
language_goal:
_target_: mode.models.networks.clip_lang_encoder.LangClip
_recursive_: false
model_name: ${clip_lang_model_name}
model:
_target_: mode.models.edm_diffusion.score_wrappers.GCDenoiser
_recursive_: false
sigma_data: ${model.sigma_data}
inner_model:
_target_: mode.models.networks.modedit.MoDeDiT
action_dim: ${datamodule.action_space}
goal_dim: ${model.cond_dim}
obs_dim: ${obs_dim}
goal_conditioned: true
causal: true
use_custom_attn_mask: false
use_proprio: ${model.use_proprio}
state_dim: ${proprio_dims}
embed_dim: ${model.latent_dim}
n_layers: 12
goal_seq_len: 1
obs_seq_len: ${obs_seq_len}
action_seq_len: ${act_seq_len}
embed_pdrob: 0
goal_drop: 0.1
attn_pdrop: 0.3
mlp_pdrop: 0.1
n_heads: 8
device: ${device}
linear_output: true
cond_router: true
num_experts: 4
top_k: 2
router_normalize: true
use_goal_in_routing: false
use_argmax: false
use_shared_expert: false
use_noise_token_as_input: true
init_style: olmoe
_target_: mode.models.mode_agent.MoDEAgent
_recursive_: false
multistep: ${multistep}
use_lr_scheduler: true
entropy_gamma: 0.01
router_z_delta: 0.0
use_proprio: false
seed: ${seed}
sampler_type: ddim
num_sampling_steps: 5
sigma_data: 0.5
sigma_min: 0.001
sigma_max: 80
noise_scheduler: exponential
sigma_sample_density_type: loglogistic
ckpt_path: /home/reuss/code/MeDiT_Policy/convert_weights/mode_first_run
start_from_pretrained: true
act_window_size: ${act_seq_len}
latent_dim: 1024
obs_enc_dim: ${obs_dim}
cond_dim: 512
resnet_type: '50'
optimizer:
_target_: torch.optim.AdamW
transformer_weight_decay: 0.05
obs_encoder_weight_decay: 0.05
learning_rate: 0.0001
betas:
- 0.9
- 0.95
lr_scheduler:
lr_scheduler:
init_lr: 0.0001
init_lr_scale: 0.1
final_lr_scale: 1.0e-06
total_steps: 45000
phase_ratio: (0.02, 0.08, 0.9)
lr: 0.0001
root_data_dir: /home/yagmurlu/code/MoDE_Calvin/dataset/task_ABC_D
lang_folder: lang_clip_resnet50
vis_clip_model_name: ViT-B/16
clip_lang_model_name: ViT-B/32
log_dir: ./logs
slurm: false
future_range: 29
seed: 242
device: cuda
batch_size: 128
devices: 2
goal_window_size: 1
act_dim: 7
proprio_dims: 9
obs_dim: 512
goal_dim: 512
obs_seq_len: 1
act_seq_len: 10
multistep: ${act_seq_len}
p_last_state: 0
gen_img_res: 112
max_epochs: 10
rollout_lh_skip_epochs: 9
num_workers: 1
benchmark_name: ${libero_benchmark}
libero_benchmark: libero_90
trainer:
gpus: ${devices}
precision: 32
max_epochs: ${max_epochs}
sync_batchnorm: false
accelerator: auto
limit_train_batches: 1000
limit_val_batches: 4
logger:
_target_: pytorch_lightning.loggers.WandbLogger
save_dir: .
name: logger
group: mode
log_model: false
project: ${libero_benchmark}
entity: bennoq
id: ???
|