Edit model card

Social Bias NER

This NER model is fine-tuned from BERT, for multi-label token classification of:

  • (GEN)eralizations
  • (UNFAIR)ness
  • (STEREO)types

You can try it out in spaces :).

How to Get Started with the Model

Transformers pipeline doesn't have a class for multi-label token classification, but you can use this code to load the model, and run it, and format the output.

import json
import torch
from transformers import BertTokenizerFast, BertForTokenClassification
import gradio as gr

# init important things
tokenizer = BertTokenizerFast.from_pretrained('bert-base-uncased')
model = BertForTokenClassification.from_pretrained('maximuspowers/bias-detection-ner')
model.eval()
model.to('cuda' if torch.cuda.is_available() else 'cpu')

# ids to labels we want to display
id2label = {
    0: 'O',
    1: 'B-STEREO',
    2: 'I-STEREO',
    3: 'B-GEN',
    4: 'I-GEN',
    5: 'B-UNFAIR',
    6: 'I-UNFAIR'
}

# predict function you'll want to use if using in your own code
def predict_ner_tags(sentence):
    inputs = tokenizer(sentence, return_tensors="pt", padding=True, truncation=True, max_length=128)
    input_ids = inputs['input_ids'].to(model.device)
    attention_mask = inputs['attention_mask'].to(model.device)

    with torch.no_grad():
        outputs = model(input_ids=input_ids, attention_mask=attention_mask)
        logits = outputs.logits
        probabilities = torch.sigmoid(logits)
        predicted_labels = (probabilities > 0.5).int() # remember to try your own threshold

    result = []
    tokens = tokenizer.convert_ids_to_tokens(input_ids[0])
    for i, token in enumerate(tokens):
        if token not in tokenizer.all_special_tokens:
            label_indices = (predicted_labels[0][i] == 1).nonzero(as_tuple=False).squeeze(-1)
            labels = [id2label[idx.item()] for idx in label_indices] if label_indices.numel() > 0 else ['O']
            result.append({"token": token, "labels": labels})

    return json.dumps(result, indent=4)
Downloads last month
63
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for maximuspowers/bias-detection-ner

Finetuned
(1911)
this model

Spaces using maximuspowers/bias-detection-ner 3