biobert-v1.1-finetuned-medmcqa

This model is a fine-tuned version of dmis-lab/biobert-v1.1 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9408
  • Accuracy: {'accuracy': 0.6190476190476191}
  • F1-score: {'f1': 0.6383219954648526}

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-06
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Accuracy F1-score
No log 1.0 229 1.1779 {'accuracy': 0.5714285714285714} {'f1': 0.5936070334566574}
No log 2.0 458 0.9840 {'accuracy': 0.6666666666666666} {'f1': 0.6800653594771241}
1.1746 3.0 687 0.9408 {'accuracy': 0.6190476190476191} {'f1': 0.6383219954648526}

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.5.0+cu121
  • Datasets 3.1.0
  • Tokenizers 0.19.1
Downloads last month
6
Safetensors
Model size
108M params
Tensor type
F32
·
Inference API
Inference API (serverless) does not yet support transformers models for this pipeline type.

Model tree for maxg73872/biobert-v1.1-finetuned-medmcqa

Finetuned
(74)
this model