File size: 4,530 Bytes
6d870c3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
---
thumbnail: https://github.com/rinnakk/japanese-pretrained-models/blob/master/rinna.png
license: gemma
datasets:
- mc4
- wikipedia
- EleutherAI/pile
- oscar-corpus/colossal-oscar-1.0
- cc100
language:
- ja
- en
tags:
- gemma2
inference: false
base_model: google/gemma-2-2b
pipeline_tag: text-generation
library_name: transformers
---

# `Gemma 2 Baku 2B (rinna/gemma-2-baku-2b)`

![rinna-icon](./rinna.png)

# Overview

We conduct continual pre-training of [google/gemma-2-2b](https://huggingface.co/google/gemma-2-2b) on **80B** tokens from a mixture of Japanese and English datasets. The continual pre-training improves the model's performance on Japanese tasks.

The name `baku` comes from the Japanese word [`獏/ばく/Baku`](https://ja.wikipedia.org/wiki/獏), which is a kind of Japanese mythical creature ([`妖怪/ようかい/Youkai`](https://ja.wikipedia.org/wiki/%E5%A6%96%E6%80%AA)).

| Size | Continual Pre-Training | Instruction-Tuning |
| :-   | :-                     | :-                 |
| 2B   | Gemma 2 Baku 2B [[HF]](https://huggingface.co/rinna/gemma-2-baku-2b) | Gemma 2 Baku 2B Instruct [[HF]](https://huggingface.co/rinna/gemma-2-baku-2b-it) |

* **Library**

    The model was trained using code based on [Lightning-AI/litgpt](https://github.com/Lightning-AI/litgpt).

* **Model architecture**

    A 26-layer, 2304-hidden-size transformer-based language model. Please refer to the [Gemma 2 Model Card](https://www.kaggle.com/models/google/gemma-2/) for detailed information on the model's architecture.

* **Training**

    The model was initialized with the [google/gemma-2-2b](https://huggingface.co/google/gemma-2-2b) model and continually trained on around **80B** tokens from a mixture of the following corpora
    - [Japanese CC-100](https://huggingface.co/datasets/cc100)
    - [Japanese C4](https://huggingface.co/datasets/mc4)
    - [Japanese OSCAR](https://huggingface.co/datasets/oscar-corpus/colossal-oscar-1.0)
    - [The Pile](https://huggingface.co/datasets/EleutherAI/pile)
    - [Wikipedia](https://dumps.wikimedia.org/other/cirrussearch)
    - rinna curated Japanese dataset
  
* **Contributors**
    - [Toshiaki Wakatsuki](https://huggingface.co/t-w)
    - [Xinqi Chen](https://huggingface.co/Keely0419)
    - [Kei Sawada](https://huggingface.co/keisawada)

---

# Benchmarking

Please refer to [rinna's LM benchmark page](https://rinnakk.github.io/research/benchmarks/lm/index.html).

---

# How to use the model

~~~python
import transformers
import torch

model_id = "rinna/gemma-2-baku-2b"
pipeline = transformers.pipeline(
    "text-generation",
    model=model_id,
    model_kwargs={"torch_dtype": torch.bfloat16, "attn_implementation": "eager"},
    device_map="auto"
)
output = pipeline(
    "西田幾多郎は、",
    max_new_tokens=256,
    do_sample=True
)
print(output[0]["generated_text"])
~~~

It is recommended to use eager attention when conducting batch inference under bfloat16 precision. 
Currently, Gemma 2 yields NaN values for input sequences with padding when the default attention mechanism (torch.scaled_dot_product_attention) is employed in conjunction with bfloat16.

---

# Tokenization
The model uses the original [google/gemma-2-2b](https://huggingface.co/google/gemma-2-2b) tokenizer.

---

# How to cite
```bibtex
@misc{rinna-gemma-2-baku-2b,
    title = {rinna/gemma-2-baku-2b},
    author = {Wakatsuki, Toshiaki and Chen, Xinqi and Sawada, Kei},
    url = {https://huggingface.co/rinna/gemma-2-baku-2b}
}

@inproceedings{sawada2024release,
    title = {Release of Pre-Trained Models for the {J}apanese Language},
    author = {Sawada, Kei and Zhao, Tianyu and Shing, Makoto and Mitsui, Kentaro and Kaga, Akio and Hono, Yukiya and Wakatsuki, Toshiaki and Mitsuda, Koh},
    booktitle = {Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)},
    month = {5},
    year = {2024},
    pages = {13898--13905},
    url = {https://aclanthology.org/2024.lrec-main.1213},
    note = {\url{https://arxiv.org/abs/2404.01657}}
}
```
---

# References
```bibtex
@article{gemma-2-2024,
    title = {Gemma 2},
    url = {https://www.kaggle.com/models/google/gemma-2},
    publisher = {Kaggle},
    author = {Gemma Team},
    year = {2024}
}

@misc{litgpt-2023,
    author = {Lightning AI},
    title = {LitGPT},
    howpublished = {\url{https://github.com/Lightning-AI/litgpt}},
    year = {2023}
}
```
---

# License
[Gemma Terms of Use](https://ai.google.dev/gemma/terms)