File size: 4,462 Bytes
3ed9b70 1d35750 3ed9b70 1d35750 3ed9b70 1d35750 3ed9b70 e51725e 3ed9b70 e51725e 3ed9b70 e51725e 3ed9b70 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 |
---
license: apache-2.0
base_model: google/vit-large-patch32-224-in21k
tags:
- image-classification
- vision
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: vit-large-patch32-224-in21k-finetuned-galaxy10-decals
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# vit-large-patch32-224-in21k-finetuned-galaxy10-decals
This model is a fine-tuned version of [google/vit-large-patch32-224-in21k](https://huggingface.co/google/vit-large-patch32-224-in21k) on the matthieulel/galaxy10_decals dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5281
- Accuracy: 0.8382
- Precision: 0.8372
- Recall: 0.8382
- F1: 0.8356
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 128
- eval_batch_size: 128
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 512
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 30
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
| 1.8923 | 0.99 | 31 | 1.6725 | 0.4600 | 0.5537 | 0.4600 | 0.3682 |
| 1.1787 | 1.98 | 62 | 0.9949 | 0.7339 | 0.7513 | 0.7339 | 0.7095 |
| 0.9165 | 2.98 | 93 | 0.7946 | 0.7700 | 0.7694 | 0.7700 | 0.7540 |
| 0.802 | 4.0 | 125 | 0.6747 | 0.7948 | 0.7954 | 0.7948 | 0.7843 |
| 0.7074 | 4.99 | 156 | 0.6196 | 0.8117 | 0.8139 | 0.8117 | 0.8115 |
| 0.6424 | 5.98 | 187 | 0.6205 | 0.8021 | 0.8075 | 0.8021 | 0.7961 |
| 0.6309 | 6.98 | 218 | 0.5760 | 0.8117 | 0.8231 | 0.8117 | 0.8127 |
| 0.5682 | 8.0 | 250 | 0.5748 | 0.8151 | 0.8196 | 0.8151 | 0.8157 |
| 0.5981 | 8.99 | 281 | 0.5704 | 0.8213 | 0.8269 | 0.8213 | 0.8158 |
| 0.547 | 9.98 | 312 | 0.5282 | 0.8377 | 0.8352 | 0.8377 | 0.8345 |
| 0.5067 | 10.98 | 343 | 0.5281 | 0.8382 | 0.8372 | 0.8382 | 0.8356 |
| 0.5066 | 12.0 | 375 | 0.5441 | 0.8247 | 0.8286 | 0.8247 | 0.8219 |
| 0.4919 | 12.99 | 406 | 0.5580 | 0.8157 | 0.8236 | 0.8157 | 0.8155 |
| 0.4508 | 13.98 | 437 | 0.5269 | 0.8303 | 0.8331 | 0.8303 | 0.8279 |
| 0.4415 | 14.98 | 468 | 0.5399 | 0.8185 | 0.8249 | 0.8185 | 0.8203 |
| 0.4178 | 16.0 | 500 | 0.5229 | 0.8320 | 0.8358 | 0.8320 | 0.8301 |
| 0.366 | 16.99 | 531 | 0.5427 | 0.8275 | 0.8281 | 0.8275 | 0.8241 |
| 0.3706 | 17.98 | 562 | 0.5389 | 0.8241 | 0.8242 | 0.8241 | 0.8230 |
| 0.3609 | 18.98 | 593 | 0.5573 | 0.8247 | 0.8262 | 0.8247 | 0.8239 |
| 0.3443 | 20.0 | 625 | 0.5605 | 0.8320 | 0.8325 | 0.8320 | 0.8302 |
| 0.3214 | 20.99 | 656 | 0.5667 | 0.8281 | 0.8295 | 0.8281 | 0.8254 |
| 0.3262 | 21.98 | 687 | 0.5797 | 0.8236 | 0.8237 | 0.8236 | 0.8214 |
| 0.299 | 22.98 | 718 | 0.5938 | 0.8202 | 0.8225 | 0.8202 | 0.8195 |
| 0.2792 | 24.0 | 750 | 0.5909 | 0.8275 | 0.8258 | 0.8275 | 0.8251 |
| 0.2969 | 24.99 | 781 | 0.5658 | 0.8309 | 0.8319 | 0.8309 | 0.8306 |
| 0.2559 | 25.98 | 812 | 0.5936 | 0.8309 | 0.8294 | 0.8309 | 0.8294 |
| 0.2756 | 26.98 | 843 | 0.5898 | 0.8292 | 0.8295 | 0.8292 | 0.8287 |
| 0.254 | 28.0 | 875 | 0.6043 | 0.8303 | 0.8319 | 0.8303 | 0.8289 |
| 0.2674 | 28.99 | 906 | 0.5950 | 0.8371 | 0.8365 | 0.8371 | 0.8353 |
| 0.2432 | 29.76 | 930 | 0.5907 | 0.8360 | 0.8348 | 0.8360 | 0.8345 |
### Framework versions
- Transformers 4.37.2
- Pytorch 2.3.0
- Datasets 2.19.1
- Tokenizers 0.15.1
|