File size: 4,294 Bytes
0985e17
 
 
6e52648
98be71c
6e52648
 
 
 
 
 
 
 
 
 
 
 
 
 
d6fc432
6e52648
 
 
 
 
 
 
 
0e13cf6
 
6e52648
 
 
 
 
 
 
 
 
8ff1eaf
 
 
 
 
 
 
 
 
 
 
 
 
 
6e52648
c5e01d8
 
 
 
6e52648
 
 
c5e01d8
 
6e52648
 
 
 
 
 
 
 
 
0e13cf6
043ea3b
6e52648
 
 
 
 
 
 
 
 
 
 
 
4ae27ec
f72f467
6e52648
 
 
 
 
 
 
 
 
e21e592
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
---
license: cc-by-nc-4.0
---

# weblab-10b

# Overview
This repository provides a Japanese-centric multilingual GPT-NeoX model of 10 billion parameters.

* **Library**
    
    The model was trained using code based on [EleutherAI/gpt-neox](https://github.com/EleutherAI/gpt-neox).

* **Model architecture**

    A 36-layer, 4864-hidden-size transformer-based language model.

* **Pre-training**

    The model was trained on around **600B** tokens from a mixture of the following corpora.

    - [Japanese C4](https://huggingface.co/datasets/mc4)
    - [The Pile](https://huggingface.co/datasets/EleutherAI/pile)

* **Model Series**

    | Variant | Link |
    | :-- | :--|
    | weblab-10b-instruction-sft | https://huggingface.co/matsuo-lab/weblab-10b-instruction-sft |
    | weblab-10b | https://huggingface.co/matsuo-lab/weblab-10b |

* **Authors**
    
    Takeshi Kojima

---

# Benchmarking

* **Japanese benchmark : JGLUE 8-task (2023-08-27)**

    - *We used [Stability-AI/lm-evaluation-harness](https://github.com/Stability-AI/lm-evaluation-harness/tree/2f1583c0735eacdfdfa5b7d656074b69577b6774) library for evaluation.*
    - *The 8-task average accuracy is based on results of JCommonsenseQA-1.1, JNLI-1.1, MARC-ja-1.1, JSQuAD-1.1, jaqket_v2-0.2, xlsum_ja-1.0, xwinograd_ja, and mgsm-1.0.*
    - *model loading is performed with float16, and evaluation is performed with template version 0.3 using the few-shot in-context learning.*
    - *The number of few-shots is 3,3,3,2,1,1,0,5.*
    - *special_tokens_map.json is modified to avoid errors during the evaluation of the second half benchmarks. As a result, the results of the first half benchmarks became slightly different.*
   
    model | average | jcommonsenseqa | jnli | marc_ja | jsquad | jaqket_v2 | xlsum_ja | xwinograd_ja | mgsm
    | :-- | :-- | :-- | :-- | :-- | :-- | :-- | :-- | :-- | :-- |
    weblab-10b-instruction-sft | 59.11 | 74.62 | 66.56 | 95.49 | 78.34 | 63.32 | 20.57 | 71.95 | 2
    weblab-10b | 50.74 | 66.58 | 53.74 | 82.07 | 62.94 | 56.19 | 10.03 | 71.95 | 2.4

* **Japanese benchmark : JGLUE 4-task (2023-08-18)**

    - *We used [Stability-AI/lm-evaluation-harness](https://github.com/Stability-AI/lm-evaluation-harness/tree/2f1583c0735eacdfdfa5b7d656074b69577b6774) library for evaluation.*
    - *The 4-task average accuracy is based on results of JCommonsenseQA-1.1, JNLI-1.1, MARC-ja-1.1, and JSQuAD-1.1.*
    - *model loading is performed with float16, and evaluation is performed with template version 0.3 using the few-shot in-context learning.*
    - *The number of few-shots is 3,3,3,2.*
   
    | Model | Average | JCommonsenseQA | JNLI | MARC-ja | JSQuAD |
    | :-- | :-- | :-- | :-- | :-- | :-- |
    | weblab-10b-instruction-sft | 78.78 | 74.35 | 65.65 | 96.06 | 79.04 |
    | weblab-10b | 66.38 | 65.86 | 54.19 | 84.49 | 60.98 |

---

# How to use the model

~~~~python
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

tokenizer = AutoTokenizer.from_pretrained("matsuo-lab/weblab-10b")
model = AutoModelForCausalLM.from_pretrained("matsuo-lab/weblab-10b", torch_dtype=torch.float16)

if torch.cuda.is_available():
    model = model.to("cuda")

text = "吾輩は猫である。"
token_ids = tokenizer.encode(text, add_special_tokens=False, return_tensors="pt")

with torch.no_grad():
    output_ids = model.generate(
        token_ids.to(model.device),
        max_new_tokens=100,
        do_sample=True,
        temperature=0.7,
        top_p=0.95
    )

output = tokenizer.decode(output_ids.tolist()[0])
print(output)

~~~~
---

# Licenese
[cc-by-nc-4.0](https://creativecommons.org/licenses/by-nc/4.0/)
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_matsuo-lab__weblab-10b)

| Metric                | Value                     |
|-----------------------|---------------------------|
| Avg.                  | 33.76   |
| ARC (25-shot)         | 39.51          |
| HellaSwag (10-shot)   | 65.76    |
| MMLU (5-shot)         | 26.29         |
| TruthfulQA (0-shot)   | 36.02   |
| Winogrande (5-shot)   | 62.51   |
| GSM8K (5-shot)        | 1.44        |
| DROP (3-shot)         | 4.81         |