whisper-large-v3-3swissdatasets

This model is a fine-tuned version of openai/whisper-large-v3 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2431
  • Wer: 16.1023

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-06
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 5000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.2894 0.0727 1000 0.3069 19.8280
0.27 0.1454 2000 0.2788 18.2352
0.2264 0.2181 3000 0.2624 17.1983
0.2819 0.2908 4000 0.2504 16.5451
0.2011 0.3635 5000 0.2431 16.1023

Framework versions

  • Transformers 4.48.2
  • Pytorch 2.6.0+cu124
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
12
Safetensors
Model size
1.54B params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for matildecs/whisper-large-v3-3swissdatasets

Finetuned
(440)
this model