File size: 1,983 Bytes
fd82848 ffae347 fd82848 ffae347 fd82848 ffae347 fd82848 ffae347 fd82848 ffae347 fd82848 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 |
---
license: mit
base_model: neuralmind/bert-base-portuguese-cased
tags:
- generated_from_trainer
metrics:
- precision
- recall
- accuracy
- f1
model-index:
- name: oracle_class_bin
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# oracle_class_bin
This model is a fine-tuned version of [neuralmind/bert-base-portuguese-cased](https://huggingface.co/neuralmind/bert-base-portuguese-cased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1746
- Precision: 0.8254
- Recall: 0.7923
- Accuracy: 0.9615
- F1: 0.8085
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 24
- eval_batch_size: 24
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | Accuracy | F1 |
|:-------------:|:------:|:----:|:---------------:|:---------:|:------:|:--------:|:------:|
| 0.1271 | 0.8407 | 1800 | 0.1045 | 0.7513 | 0.8544 | 0.9560 | 0.7996 |
| 0.0913 | 1.6815 | 3600 | 0.1075 | 0.8110 | 0.7968 | 0.9601 | 0.8038 |
| 0.0791 | 2.5222 | 5400 | 0.1283 | 0.8287 | 0.7885 | 0.9615 | 0.8081 |
| 0.0553 | 3.3629 | 7200 | 0.1272 | 0.8160 | 0.8067 | 0.9615 | 0.8113 |
| 0.0384 | 4.2036 | 9000 | 0.1746 | 0.8254 | 0.7923 | 0.9615 | 0.8085 |
### Framework versions
- Transformers 4.41.2
- Pytorch 2.1.0
- Datasets 2.20.0
- Tokenizers 0.19.1
|