mateussj commited on
Commit
ffae347
1 Parent(s): fd82848

oracle-corejur/bert_oracle_class_bin_cur2_anno_neg_v1

Browse files
Files changed (3) hide show
  1. README.md +15 -16
  2. model.safetensors +1 -1
  3. training_args.bin +1 -1
README.md CHANGED
@@ -20,11 +20,11 @@ should probably proofread and complete it, then remove this comment. -->
20
 
21
  This model is a fine-tuned version of [neuralmind/bert-base-portuguese-cased](https://huggingface.co/neuralmind/bert-base-portuguese-cased) on an unknown dataset.
22
  It achieves the following results on the evaluation set:
23
- - Loss: 0.1283
24
- - Precision: 0.7996
25
- - Recall: 0.8499
26
- - Accuracy: 0.9627
27
- - F1: 0.8240
28
 
29
  ## Model description
30
 
@@ -43,30 +43,29 @@ More information needed
43
  ### Training hyperparameters
44
 
45
  The following hyperparameters were used during training:
46
- - learning_rate: 2e-05
47
- - train_batch_size: 16
48
- - eval_batch_size: 16
49
  - seed: 42
50
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
51
  - lr_scheduler_type: linear
52
- - lr_scheduler_warmup_steps: 2000
53
- - num_epochs: 3
54
  - mixed_precision_training: Native AMP
55
 
56
  ### Training results
57
 
58
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | Accuracy | F1 |
59
  |:-------------:|:------:|:----:|:---------------:|:---------:|:------:|:--------:|:------:|
60
- | 0.1359 | 0.5606 | 1800 | 0.1183 | 0.7706 | 0.7945 | 0.9546 | 0.7824 |
61
- | 0.1129 | 1.1211 | 3600 | 0.1203 | 0.7550 | 0.8529 | 0.9565 | 0.8010 |
62
- | 0.0919 | 1.6817 | 5400 | 0.1111 | 0.8016 | 0.8180 | 0.9605 | 0.8098 |
63
- | 0.0658 | 2.2423 | 7200 | 0.1142 | 0.8059 | 0.8249 | 0.9616 | 0.8153 |
64
- | 0.0731 | 2.8029 | 9000 | 0.1283 | 0.7996 | 0.8499 | 0.9627 | 0.8240 |
65
 
66
 
67
  ### Framework versions
68
 
69
  - Transformers 4.41.2
70
  - Pytorch 2.1.0
71
- - Datasets 2.19.2
72
  - Tokenizers 0.19.1
 
20
 
21
  This model is a fine-tuned version of [neuralmind/bert-base-portuguese-cased](https://huggingface.co/neuralmind/bert-base-portuguese-cased) on an unknown dataset.
22
  It achieves the following results on the evaluation set:
23
+ - Loss: 0.1746
24
+ - Precision: 0.8254
25
+ - Recall: 0.7923
26
+ - Accuracy: 0.9615
27
+ - F1: 0.8085
28
 
29
  ## Model description
30
 
 
43
  ### Training hyperparameters
44
 
45
  The following hyperparameters were used during training:
46
+ - learning_rate: 5e-05
47
+ - train_batch_size: 24
48
+ - eval_batch_size: 24
49
  - seed: 42
50
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
51
  - lr_scheduler_type: linear
52
+ - num_epochs: 5
 
53
  - mixed_precision_training: Native AMP
54
 
55
  ### Training results
56
 
57
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | Accuracy | F1 |
58
  |:-------------:|:------:|:----:|:---------------:|:---------:|:------:|:--------:|:------:|
59
+ | 0.1271 | 0.8407 | 1800 | 0.1045 | 0.7513 | 0.8544 | 0.9560 | 0.7996 |
60
+ | 0.0913 | 1.6815 | 3600 | 0.1075 | 0.8110 | 0.7968 | 0.9601 | 0.8038 |
61
+ | 0.0791 | 2.5222 | 5400 | 0.1283 | 0.8287 | 0.7885 | 0.9615 | 0.8081 |
62
+ | 0.0553 | 3.3629 | 7200 | 0.1272 | 0.8160 | 0.8067 | 0.9615 | 0.8113 |
63
+ | 0.0384 | 4.2036 | 9000 | 0.1746 | 0.8254 | 0.7923 | 0.9615 | 0.8085 |
64
 
65
 
66
  ### Framework versions
67
 
68
  - Transformers 4.41.2
69
  - Pytorch 2.1.0
70
+ - Datasets 2.20.0
71
  - Tokenizers 0.19.1
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:2ababeba77ba6f0ffdbc1ad73341ca770e94fd02b08fcfa782fc76226a81bbdd
3
  size 435722224
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:adbf9e8cc6da610ee393219717e71b7fc2f01f1dd6878931838766b267d8541b
3
  size 435722224
training_args.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:044c5fea04361469e06615de9fb08cf689bf6f068d787385a3419b039b176641
3
  size 5112
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:03b2a5ce05f01dd8c226afca29908ac2d4cc209465b2d30bda9ef8468d63ca13
3
  size 5112