COHeN_2.0
This model is a fine-tuned version of gngpostalsrvc/BERiT_2.0 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 1.5952
- Accuracy: 0.7400
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0027431492469971175
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
No log | 1.0 | 300 | 0.6925 | 0.7776 |
0.7839 | 2.0 | 600 | 0.7892 | 0.7659 |
0.7839 | 3.0 | 900 | 0.8811 | 0.7960 |
0.4686 | 4.0 | 1200 | 0.9765 | 0.7517 |
0.3895 | 5.0 | 1500 | 0.9252 | 0.7542 |
0.3895 | 6.0 | 1800 | 0.8912 | 0.7801 |
0.3393 | 7.0 | 2100 | 1.0998 | 0.7375 |
0.3393 | 8.0 | 2400 | 0.8183 | 0.7952 |
0.3216 | 9.0 | 2700 | 0.8209 | 0.8052 |
0.3037 | 10.0 | 3000 | 1.0785 | 0.7993 |
0.3037 | 11.0 | 3300 | 0.8882 | 0.7977 |
0.268 | 12.0 | 3600 | 1.0609 | 0.7759 |
0.268 | 13.0 | 3900 | 1.0853 | 0.7584 |
0.2606 | 14.0 | 4200 | 1.0418 | 0.7742 |
0.2415 | 15.0 | 4500 | 1.1806 | 0.7667 |
0.2415 | 16.0 | 4800 | 1.0558 | 0.7692 |
0.2379 | 17.0 | 5100 | 1.1977 | 0.7600 |
0.2379 | 18.0 | 5400 | 1.3400 | 0.7550 |
0.2305 | 19.0 | 5700 | 1.3001 | 0.7550 |
0.216 | 20.0 | 6000 | 1.5855 | 0.7291 |
0.216 | 21.0 | 6300 | 1.4484 | 0.7525 |
0.2069 | 22.0 | 6600 | 1.3613 | 0.7483 |
0.2069 | 23.0 | 6900 | 1.3460 | 0.7517 |
0.2063 | 24.0 | 7200 | 1.4035 | 0.7617 |
0.1885 | 25.0 | 7500 | 1.5058 | 0.7533 |
0.1885 | 26.0 | 7800 | 1.2427 | 0.7868 |
0.1804 | 27.0 | 8100 | 1.4027 | 0.7383 |
0.1804 | 28.0 | 8400 | 1.2624 | 0.7492 |
0.1754 | 29.0 | 8700 | 1.2262 | 0.7692 |
0.1754 | 30.0 | 9000 | 1.4582 | 0.7433 |
0.1754 | 31.0 | 9300 | 1.4874 | 0.7258 |
0.1579 | 32.0 | 9600 | 1.3454 | 0.7492 |
0.1579 | 33.0 | 9900 | 1.3912 | 0.7475 |
0.1579 | 34.0 | 10200 | 1.4488 | 0.7441 |
0.1491 | 35.0 | 10500 | 1.4408 | 0.7333 |
0.1491 | 36.0 | 10800 | 1.5203 | 0.7299 |
0.1384 | 37.0 | 11100 | 1.3623 | 0.7617 |
0.1384 | 38.0 | 11400 | 1.4582 | 0.7408 |
0.1333 | 39.0 | 11700 | 1.4770 | 0.7333 |
0.1323 | 40.0 | 12000 | 1.5151 | 0.7358 |
0.1323 | 41.0 | 12300 | 1.3267 | 0.7450 |
0.119 | 42.0 | 12600 | 1.3765 | 0.7458 |
0.119 | 43.0 | 12900 | 1.5366 | 0.7349 |
0.123 | 44.0 | 13200 | 1.4966 | 0.7425 |
0.1217 | 45.0 | 13500 | 1.5868 | 0.7349 |
0.1217 | 46.0 | 13800 | 1.5798 | 0.7383 |
0.1142 | 47.0 | 14100 | 1.5946 | 0.7383 |
0.1142 | 48.0 | 14400 | 1.5240 | 0.7408 |
0.1172 | 49.0 | 14700 | 1.5858 | 0.7391 |
0.1077 | 50.0 | 15000 | 1.5952 | 0.7400 |
Framework versions
- Transformers 4.47.1
- Pytorch 2.5.1+cu118
- Datasets 3.2.0
- Tokenizers 0.21.0
- Downloads last month
- 9
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.