File size: 4,376 Bytes
d84f4ed
 
074846f
61752de
d84f4ed
 
 
92681cb
d84f4ed
92681cb
 
d84f4ed
92681cb
d84f4ed
92681cb
 
 
 
0829d49
92681cb
 
 
 
 
 
 
 
 
 
 
 
 
0829d49
92681cb
 
fb5ea5a
92681cb
 
 
 
 
 
 
 
d84f4ed
 
 
 
 
 
 
61752de
d84f4ed
61752de
 
d84f4ed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
074846f
 
d84f4ed
 
074846f
 
d84f4ed
 
fbfdfe3
 
d84f4ed
 
 
 
fbfdfe3
 
61752de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d84f4ed
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
---
language:
- sv-SE
license: cc0-1.0
tags:
- automatic-speech-recognition
- mozilla-foundation/common_voice_7_0
- sv
- generated_from_trainer
- robust-speech-event
- model_for_talk
datasets:
- mozilla-foundation/common_voice_7_0
model-index:
- name: XLS-R-300M-voxrex - Swedish
  results:
  - task: 
      name: Automatic Speech Recognition 
      type: automatic-speech-recognition
    dataset:
      name: Common Voice 7
      type: mozilla-foundation/common_voice_7_0
      args: sv-SE
    metrics:
      - name: Test WER
        type: wer
        value: 18.89
      - name: Test CER
        type: cer
        value: 6.63
  - task: 
      name: Automatic Speech Recognition 
      type: automatic-speech-recognition
    dataset:
      name: Robust Speech Event - Dev Data
      type: speech-recognition-community-v2/dev_data
      args: sv
    metrics:
      - name: Test WER
        type: wer
        value: 30.65
      - name: Test CER
        type: cer
        value: 13.56
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# 

This model is a fine-tuned version of [KBLab/wav2vec2-large-voxrex](https://huggingface.co/KBLab/wav2vec2-large-voxrex) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - SV-SE dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2201
- Wer: 0.1778

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 7.5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 2000
- num_epochs: 50.0
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Wer    |
|:-------------:|:-----:|:-----:|:---------------:|:------:|
| 3.1522        | 1.45  | 500   | 3.1290          | 1.0    |
| 2.9576        | 2.91  | 1000  | 2.9633          | 1.0    |
| 1.9853        | 4.36  | 1500  | 0.8902          | 0.6104 |
| 1.5867        | 5.81  | 2000  | 0.4793          | 0.3664 |
| 1.4608        | 7.27  | 2500  | 0.3816          | 0.3095 |
| 1.3496        | 8.72  | 3000  | 0.3415          | 0.2783 |
| 1.3058        | 10.17 | 3500  | 0.3072          | 0.2519 |
| 1.2533        | 11.63 | 4000  | 0.2877          | 0.2381 |
| 1.2535        | 13.08 | 4500  | 0.2791          | 0.2320 |
| 1.2273        | 14.53 | 5000  | 0.2726          | 0.2282 |
| 1.2083        | 15.99 | 5500  | 0.2638          | 0.2212 |
| 1.1606        | 17.44 | 6000  | 0.2531          | 0.2174 |
| 1.1545        | 18.89 | 6500  | 0.2468          | 0.2109 |
| 1.1344        | 20.35 | 7000  | 0.2494          | 0.2050 |
| 1.1173        | 21.8  | 7500  | 0.2447          | 0.1980 |
| 1.1081        | 23.26 | 8000  | 0.2428          | 0.1998 |
| 1.1023        | 24.71 | 8500  | 0.2329          | 0.1951 |
| 1.0923        | 26.16 | 9000  | 0.2388          | 0.1962 |
| 1.0798        | 27.61 | 9500  | 0.2363          | 0.1944 |
| 1.0769        | 29.07 | 10000 | 0.2342          | 0.1913 |
| 1.0672        | 30.52 | 10500 | 0.2250          | 0.1875 |
| 1.0735        | 31.97 | 11000 | 0.2305          | 0.1874 |
| 1.0628        | 33.43 | 11500 | 0.2291          | 0.1851 |
| 1.0451        | 34.88 | 12000 | 0.2263          | 0.1856 |
| 1.0299        | 36.34 | 12500 | 0.2257          | 0.1834 |
| 1.0368        | 37.79 | 13000 | 0.2230          | 0.1808 |
| 1.0322        | 39.24 | 13500 | 0.2231          | 0.1833 |
| 1.0451        | 40.7  | 14000 | 0.2197          | 0.1817 |
| 1.0304        | 42.15 | 14500 | 0.2241          | 0.1813 |
| 1.0102        | 43.6  | 15000 | 0.2233          | 0.1795 |
| 1.0135        | 45.06 | 15500 | 0.2200          | 0.1794 |
| 1.014         | 46.51 | 16000 | 0.2207          | 0.1779 |
| 1.0071        | 47.96 | 16500 | 0.2205          | 0.1784 |
| 0.9729        | 49.42 | 17000 | 0.2204          | 0.1777 |


### Framework versions

- Transformers 4.16.0.dev0
- Pytorch 1.10.1+cu102
- Datasets 1.17.1.dev0
- Tokenizers 0.11.0