marinone94 commited on
Commit
fbfdfe3
·
1 Parent(s): cf7ab1e

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +40 -9
README.md CHANGED
@@ -20,8 +20,8 @@ should probably proofread and complete it, then remove this comment. -->
20
 
21
  This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - SV-SE dataset.
22
  It achieves the following results on the evaluation set:
23
- - Loss: 1.5563
24
- - Wer: 0.9487
25
 
26
  ## Model description
27
 
@@ -48,17 +48,48 @@ The following hyperparameters were used during training:
48
  - total_train_batch_size: 32
49
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
50
  - lr_scheduler_type: linear
51
- - lr_scheduler_warmup_steps: 20
52
- - num_epochs: 5.0
53
  - mixed_precision_training: Native AMP
54
 
55
  ### Training results
56
 
57
- | Training Loss | Epoch | Step | Validation Loss | Wer |
58
- |:-------------:|:-----:|:----:|:---------------:|:------:|
59
- | 2.9069 | 1.45 | 500 | 2.9047 | 1.0 |
60
- | 2.5875 | 2.91 | 1000 | 2.4159 | 1.1997 |
61
- | 2.2043 | 4.36 | 1500 | 1.6192 | 0.9598 |
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
62
 
63
 
64
  ### Framework versions
 
20
 
21
  This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - SV-SE dataset.
22
  It achieves the following results on the evaluation set:
23
+ - Loss: 0.3179
24
+ - Wer: 0.2735
25
 
26
  ## Model description
27
 
 
48
  - total_train_batch_size: 32
49
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
50
  - lr_scheduler_type: linear
51
+ - lr_scheduler_warmup_steps: 2000
52
+ - num_epochs: 50.0
53
  - mixed_precision_training: Native AMP
54
 
55
  ### Training results
56
 
57
+ | Training Loss | Epoch | Step | Validation Loss | Wer |
58
+ |:-------------:|:-----:|:-----:|:---------------:|:------:|
59
+ | 3.3332 | 1.45 | 500 | 3.2920 | 1.0 |
60
+ | 2.9269 | 2.91 | 1000 | 2.9415 | 0.9966 |
61
+ | 2.0719 | 4.36 | 1500 | 1.1641 | 0.8508 |
62
+ | 1.7404 | 5.81 | 2000 | 0.7281 | 0.6846 |
63
+ | 1.5921 | 7.27 | 2500 | 0.5886 | 0.5147 |
64
+ | 1.4941 | 8.72 | 3000 | 0.5183 | 0.5063 |
65
+ | 1.4486 | 10.17 | 3500 | 0.4749 | 0.4676 |
66
+ | 1.3899 | 11.63 | 4000 | 0.4565 | 0.4432 |
67
+ | 1.3881 | 13.08 | 4500 | 0.4316 | 0.4228 |
68
+ | 1.3572 | 14.53 | 5000 | 0.4195 | 0.3834 |
69
+ | 1.3261 | 15.99 | 5500 | 0.3974 | 0.3607 |
70
+ | 1.2809 | 17.44 | 6000 | 0.3845 | 0.3467 |
71
+ | 1.2713 | 18.89 | 6500 | 0.3832 | 0.3450 |
72
+ | 1.257 | 20.35 | 7000 | 0.3779 | 0.3373 |
73
+ | 1.2298 | 21.8 | 7500 | 0.3744 | 0.3391 |
74
+ | 1.2173 | 23.26 | 8000 | 0.3745 | 0.3262 |
75
+ | 1.1966 | 24.71 | 8500 | 0.3680 | 0.3241 |
76
+ | 1.1925 | 26.16 | 9000 | 0.3605 | 0.3171 |
77
+ | 1.1692 | 27.61 | 9500 | 0.3512 | 0.3147 |
78
+ | 1.1704 | 29.07 | 10000 | 0.3532 | 0.3098 |
79
+ | 1.1595 | 30.52 | 10500 | 0.3425 | 0.3039 |
80
+ | 1.1433 | 31.97 | 11000 | 0.3568 | 0.3026 |
81
+ | 1.1295 | 33.43 | 11500 | 0.3461 | 0.2992 |
82
+ | 1.1131 | 34.88 | 12000 | 0.3349 | 0.2942 |
83
+ | 1.1015 | 36.34 | 12500 | 0.3378 | 0.2961 |
84
+ | 1.0835 | 37.79 | 13000 | 0.3282 | 0.2865 |
85
+ | 1.083 | 39.24 | 13500 | 0.3182 | 0.2826 |
86
+ | 1.0819 | 40.7 | 14000 | 0.3264 | 0.2850 |
87
+ | 1.072 | 42.15 | 14500 | 0.3279 | 0.2817 |
88
+ | 1.0456 | 43.6 | 15000 | 0.3234 | 0.2793 |
89
+ | 1.0581 | 45.06 | 15500 | 0.3220 | 0.2779 |
90
+ | 1.0406 | 46.51 | 16000 | 0.3208 | 0.2762 |
91
+ | 1.0422 | 47.96 | 16500 | 0.3184 | 0.2752 |
92
+ | 1.0099 | 49.42 | 17000 | 0.3181 | 0.2735 |
93
 
94
 
95
  ### Framework versions