|
from argparse import Namespace |
|
from torch.utils.checkpoint import checkpoint |
|
from transformers import PreTrainedModel |
|
from transformers.modeling_outputs import CausalLMOutputWithPast |
|
from open_lm.utils.transformers.hf_config import OpenLMConfig |
|
from open_lm.model import Transformer, create_params |
|
from open_lm.attention import get_attn_func, xformers_attn, torch_attn |
|
from open_lm.norms import get_norm_class |
|
import torch |
|
import torch.nn as nn |
|
from typing import Union, Tuple, Optional, List |
|
import os |
|
|
|
|
|
class OpenLMModel(PreTrainedModel): |
|
config_class = OpenLMConfig |
|
|
|
def __init__(self, config, **kwargs): |
|
|
|
if hasattr(config, "params"): |
|
params = config.params |
|
else: |
|
params_args_dict = config.params_args_dict |
|
if not params_args_dict.get("norm_type"): |
|
params_args_dict["norm_type"] = get_norm_class(params_args_dict["model_norm"]) |
|
if not params_args_dict.get("attn_func"): |
|
params_args_dict["attn_func"] = get_attn_func( |
|
params_args_dict["attn_name"], |
|
params_args_dict["attn_activation"], |
|
params_args_dict["attn_seq_scalar"], |
|
params_args_dict["attn_seq_scalar_alpha"] |
|
) |
|
params = create_params(Namespace(**config.params_args_dict)) |
|
config.set_params(params) |
|
super().__init__(config, **kwargs) |
|
|
|
self.supports_gradient_checkpointing = True |
|
self.model = Transformer(params) |
|
|
|
@property |
|
def gradient_checkpointing(self): |
|
return self.model.grad_checkpointing |
|
|
|
@gradient_checkpointing.setter |
|
def gradient_checkpointing(self, value): |
|
self.model.grad_checkpointing = value |
|
|
|
def forward(self, input_ids=None, inputs_embeds=None, **kwargs): |
|
return self.model(input_ids=input_ids, inputs_embeds=inputs_embeds, **kwargs) |
|
|
|
|
|
class OpenLMforCausalLM(OpenLMModel): |
|
_keys_to_ignore_on_load_missing = [r"lm_head.weight"] |
|
|
|
def __init__(self, config, **kwargs): |
|
super().__init__(config, **kwargs) |
|
self.lm_head = None |
|
|
|
self.post_init() |
|
|
|
def get_input_embeddings(self): |
|
return self.model.tok_embeddings |
|
|
|
def set_input_embeddings(self, value): |
|
self.model.tok_embeddings = value |
|
|
|
def get_output_embeddings(self): |
|
return self.model.get_output_embeddings() |
|
|
|
def set_output_embeddings(self, new_embeddings): |
|
raise NotImplementedError |
|
|
|
def set_decoder(self, decoder): |
|
self.model = decoder |
|
|
|
def get_decoder(self): |
|
return self.model |
|
|
|
def forward( |
|
self, |
|
input_ids: Optional[torch.Tensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[List[torch.FloatTensor]] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
use_cache: Optional[bool] = False, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple, CausalLMOutputWithPast]: |
|
r""" |
|
Args: |
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., |
|
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored |
|
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. |
|
Returns: |
|
Example: |
|
```python |
|
>>> from transformers import AutoTokenizer, OpenLlamaForCausalLM |
|
>>> model = OpenLlamaForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS) |
|
>>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER) |
|
>>> prompt = "Hey, are you consciours? Can you talk to me?" |
|
>>> inputs = tokenizer(prompt, return_tensors="pt") |
|
>>> # Generate |
|
>>> generate_ids = model.generate(inputs.input_ids, max_length=30) |
|
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] |
|
"Hey, are you consciours? Can you talk to me?\nI'm not consciours, but I can talk to you." |
|
```""" |
|
assert position_ids is None, "Position IDs are not supported" |
|
|
|
logits, _, past_key_values = self.model( |
|
input_ids=input_ids, |
|
inputs_embeds=inputs_embeds, |
|
past_key_values=past_key_values, |
|
use_cache=use_cache, |
|
attention_mask=attention_mask, |
|
) |
|
loss = None |
|
if labels is not None: |
|
shift_logits = logits[..., :-1, :].contiguous() |
|
shift_labels = labels[..., 1:].contiguous() |
|
loss_fct = nn.CrossEntropyLoss() |
|
shift_logits = shift_logits.view(-1, shift_logits.size(-1)) |
|
shift_labels = shift_labels.view(-1).to(shift_logits.device) |
|
loss = loss_fct(shift_logits, shift_labels) |
|
|
|
output = CausalLMOutputWithPast(logits=logits, past_key_values=past_key_values, loss=loss) |
|
return output |
|
|
|
def prepare_inputs_for_generation( |
|
self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs |
|
): |
|
if past_key_values is not None: |
|
past_length = past_key_values[0][0].shape[1] |
|
|
|
|
|
if input_ids.shape[1] > past_length: |
|
remove_prefix_length = past_length |
|
else: |
|
|
|
remove_prefix_length = input_ids.shape[1] - 1 |
|
|
|
input_ids = input_ids[:, remove_prefix_length:] |
|
|
|
|
|
if inputs_embeds is not None and past_key_values is None: |
|
model_inputs = {"inputs_embeds": inputs_embeds} |
|
else: |
|
model_inputs = {"input_ids": input_ids} |
|
|
|
model_inputs.update( |
|
{ |
|
"past_key_values": past_key_values, |
|
"use_cache": kwargs.get("use_cache"), |
|
"attention_mask": attention_mask, |
|
} |
|
) |
|
return model_inputs |
|
|
|
@staticmethod |
|
def _reorder_cache(past_key_values, beam_idx): |
|
reordered_cache = () |
|
for layer_past in past_key_values: |
|
reordered_cache += (tuple(past_state.index_select(0, beam_idx) for past_state in layer_past),) |
|
return reordered_cache |
|
|
|
@classmethod |
|
def from_pretrained(cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], **kwargs): |
|
if ( |
|
os.path.isdir(pretrained_model_name_or_path) |
|
and kwargs.get("config", None) is not None |
|
and getattr(kwargs["config"], "checkpoint_file", None) is not None |
|
): |
|
|
|
torch_dtype = getattr(kwargs["config"], "torch_dtype", None) |
|
if isinstance(torch_dtype, str): |
|
torch_dtype = getattr(torch, torch_dtype) |
|
if torch_dtype is not None: |
|
torch.set_default_dtype(torch_dtype) |
|
|
|
print("Loading checkpoint from directory") |
|
checkpoint_path = kwargs["config"].checkpoint_file |
|
checkpoint = torch.load(checkpoint_path) |
|
|
|
state_dict = checkpoint["state_dict"] |
|
state_dict = {x.replace("module.", ""): y for x, y in state_dict.items()} |
|
state_dict = {f"model.{x}": y for x, y in state_dict.items()} |
|
|
|
return super().from_pretrained(None, state_dict=state_dict, **kwargs) |
|
elif os.path.isdir(pretrained_model_name_or_path): |
|
|
|
print("Loading checkpoint from directory") |
|
checkpoint_path = os.path.join(pretrained_model_name_or_path, "pytorch_model.bin") |
|
state_dict = torch.load(checkpoint_path) |
|
|
|
|
|
state_dict = {f"model.{x}" if "model." not in x else x: y for x, y in state_dict.items()} |
|
|
|
return super().from_pretrained(pretrained_model_name_or_path, state_dict=state_dict, **kwargs) |
|
else: |
|
return super().from_pretrained(pretrained_model_name_or_path, **kwargs) |
|
|