marianna13
commited on
Commit
•
7e497b3
1
Parent(s):
1662689
Upload folder using huggingface_hub
Browse files- config.json +28 -3
- configuration_openlm.py +1 -0
- modeling_openlm.py +203 -0
- pytorch_model.bin +3 -0
- special_tokens_map.json +23 -0
- tokenizer.json +0 -0
- tokenizer_config.json +214 -0
config.json
CHANGED
@@ -1,8 +1,28 @@
|
|
1 |
{
|
|
|
2 |
"architectures": [
|
3 |
-
"
|
4 |
],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
"model_type": "openlm",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
"params": null,
|
7 |
"params_args_dict": {
|
8 |
"apply_qk_norm": true,
|
@@ -31,6 +51,11 @@
|
|
31 |
"vocab_size": 50432,
|
32 |
"weight_tying": false
|
33 |
},
|
34 |
-
"
|
35 |
-
"
|
|
|
|
|
|
|
|
|
|
|
36 |
}
|
|
|
1 |
{
|
2 |
+
"apply_qk_norm": true,
|
3 |
"architectures": [
|
4 |
+
"OpenLMforCausalLM"
|
5 |
],
|
6 |
+
"attn_func": null,
|
7 |
+
"auto_map": {
|
8 |
+
"AutoConfig": "configuration_openlm.OpenLMConfig",
|
9 |
+
"AutoModel": "modeling_openlm.OpenLMModel",
|
10 |
+
"AutoModelForCausalLM": "modeling_openlm.OpenLMforCausalLM"
|
11 |
+
},
|
12 |
+
"dim": 2560,
|
13 |
+
"ffn_type": "swiglu",
|
14 |
"model_type": "openlm",
|
15 |
+
"moe_capacity_factor": 1.25,
|
16 |
+
"moe_expert_model_parallelism": false,
|
17 |
+
"moe_freq": 0,
|
18 |
+
"moe_loss_weight": 0.1,
|
19 |
+
"moe_num_experts": null,
|
20 |
+
"moe_top_k": 2,
|
21 |
+
"moe_weight_parallelism": false,
|
22 |
+
"n_heads": 32,
|
23 |
+
"n_layers": 32,
|
24 |
+
"norm_eps": 1e-05,
|
25 |
+
"norm_type": null,
|
26 |
"params": null,
|
27 |
"params_args_dict": {
|
28 |
"apply_qk_norm": true,
|
|
|
51 |
"vocab_size": 50432,
|
52 |
"weight_tying": false
|
53 |
},
|
54 |
+
"positional_embedding_type": "rotary",
|
55 |
+
"post_embed_norm": false,
|
56 |
+
"seq_len": 2048,
|
57 |
+
"tie_word_embeddings": false,
|
58 |
+
"transformers_version": "4.40.0",
|
59 |
+
"vocab_size": 50432,
|
60 |
+
"weight_tying": false
|
61 |
}
|
configuration_openlm.py
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
from open_lm.utils.transformers.hf_config import OpenLMConfig
|
modeling_openlm.py
ADDED
@@ -0,0 +1,203 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from argparse import Namespace
|
2 |
+
from torch.utils.checkpoint import checkpoint
|
3 |
+
from transformers import PreTrainedModel
|
4 |
+
from transformers.modeling_outputs import CausalLMOutputWithPast
|
5 |
+
from open_lm.utils.transformers.hf_config import OpenLMConfig
|
6 |
+
from open_lm.model import Transformer, create_params
|
7 |
+
from open_lm.attention import get_attn_func, xformers_attn, torch_attn
|
8 |
+
from open_lm.norms import get_norm_class
|
9 |
+
import torch
|
10 |
+
import torch.nn as nn
|
11 |
+
from typing import Union, Tuple, Optional, List
|
12 |
+
import os
|
13 |
+
|
14 |
+
|
15 |
+
class OpenLMModel(PreTrainedModel):
|
16 |
+
config_class = OpenLMConfig
|
17 |
+
|
18 |
+
def __init__(self, config, **kwargs):
|
19 |
+
# This has to be done before init as it sets makes sure hf config is correct
|
20 |
+
if hasattr(config, "params"):
|
21 |
+
params = config.params
|
22 |
+
else:
|
23 |
+
params_args_dict = config.params_args_dict
|
24 |
+
if not params_args_dict.get("norm_type"):
|
25 |
+
params_args_dict["norm_type"] = get_norm_class(params_args_dict["model_norm"])
|
26 |
+
if not params_args_dict.get("attn_func"):
|
27 |
+
params_args_dict["attn_func"] = get_attn_func(
|
28 |
+
params_args_dict["attn_name"],
|
29 |
+
params_args_dict["attn_activation"],
|
30 |
+
params_args_dict["attn_seq_scalar"],
|
31 |
+
params_args_dict["attn_seq_scalar_alpha"]
|
32 |
+
)
|
33 |
+
params = create_params(Namespace(**config.params_args_dict))
|
34 |
+
config.set_params(params)
|
35 |
+
super().__init__(config, **kwargs)
|
36 |
+
|
37 |
+
self.supports_gradient_checkpointing = True
|
38 |
+
self.model = Transformer(params)
|
39 |
+
|
40 |
+
@property
|
41 |
+
def gradient_checkpointing(self):
|
42 |
+
return self.model.grad_checkpointing
|
43 |
+
|
44 |
+
@gradient_checkpointing.setter
|
45 |
+
def gradient_checkpointing(self, value):
|
46 |
+
self.model.grad_checkpointing = value
|
47 |
+
|
48 |
+
def forward(self, input_ids=None, inputs_embeds=None, **kwargs):
|
49 |
+
return self.model(input_ids=input_ids, inputs_embeds=inputs_embeds, **kwargs)
|
50 |
+
|
51 |
+
|
52 |
+
class OpenLMforCausalLM(OpenLMModel):
|
53 |
+
_keys_to_ignore_on_load_missing = [r"lm_head.weight"]
|
54 |
+
|
55 |
+
def __init__(self, config, **kwargs):
|
56 |
+
super().__init__(config, **kwargs)
|
57 |
+
self.lm_head = None
|
58 |
+
# Initialize weights and apply final processing
|
59 |
+
self.post_init()
|
60 |
+
|
61 |
+
def get_input_embeddings(self):
|
62 |
+
return self.model.tok_embeddings
|
63 |
+
|
64 |
+
def set_input_embeddings(self, value):
|
65 |
+
self.model.tok_embeddings = value
|
66 |
+
|
67 |
+
def get_output_embeddings(self):
|
68 |
+
return self.model.get_output_embeddings()
|
69 |
+
|
70 |
+
def set_output_embeddings(self, new_embeddings):
|
71 |
+
raise NotImplementedError
|
72 |
+
|
73 |
+
def set_decoder(self, decoder):
|
74 |
+
self.model = decoder
|
75 |
+
|
76 |
+
def get_decoder(self):
|
77 |
+
return self.model
|
78 |
+
|
79 |
+
def forward(
|
80 |
+
self,
|
81 |
+
input_ids: Optional[torch.Tensor] = None,
|
82 |
+
attention_mask: Optional[torch.Tensor] = None,
|
83 |
+
position_ids: Optional[torch.LongTensor] = None,
|
84 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
85 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
86 |
+
labels: Optional[torch.LongTensor] = None,
|
87 |
+
use_cache: Optional[bool] = False,
|
88 |
+
output_attentions: Optional[bool] = None,
|
89 |
+
output_hidden_states: Optional[bool] = None,
|
90 |
+
return_dict: Optional[bool] = None,
|
91 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
92 |
+
r"""
|
93 |
+
Args:
|
94 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
95 |
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
96 |
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
97 |
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
98 |
+
Returns:
|
99 |
+
Example:
|
100 |
+
```python
|
101 |
+
>>> from transformers import AutoTokenizer, OpenLlamaForCausalLM
|
102 |
+
>>> model = OpenLlamaForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
|
103 |
+
>>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
|
104 |
+
>>> prompt = "Hey, are you consciours? Can you talk to me?"
|
105 |
+
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
106 |
+
>>> # Generate
|
107 |
+
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
108 |
+
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
109 |
+
"Hey, are you consciours? Can you talk to me?\nI'm not consciours, but I can talk to you."
|
110 |
+
```"""
|
111 |
+
assert position_ids is None, "Position IDs are not supported"
|
112 |
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
113 |
+
logits, _, past_key_values = self.model(
|
114 |
+
input_ids=input_ids,
|
115 |
+
inputs_embeds=inputs_embeds,
|
116 |
+
past_key_values=past_key_values,
|
117 |
+
use_cache=use_cache,
|
118 |
+
attention_mask=attention_mask,
|
119 |
+
)
|
120 |
+
loss = None
|
121 |
+
if labels is not None:
|
122 |
+
shift_logits = logits[..., :-1, :].contiguous()
|
123 |
+
shift_labels = labels[..., 1:].contiguous()
|
124 |
+
loss_fct = nn.CrossEntropyLoss()
|
125 |
+
shift_logits = shift_logits.view(-1, shift_logits.size(-1))
|
126 |
+
shift_labels = shift_labels.view(-1).to(shift_logits.device)
|
127 |
+
loss = loss_fct(shift_logits, shift_labels)
|
128 |
+
|
129 |
+
output = CausalLMOutputWithPast(logits=logits, past_key_values=past_key_values, loss=loss)
|
130 |
+
return output
|
131 |
+
|
132 |
+
def prepare_inputs_for_generation(
|
133 |
+
self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
|
134 |
+
):
|
135 |
+
if past_key_values is not None:
|
136 |
+
past_length = past_key_values[0][0].shape[1]
|
137 |
+
|
138 |
+
# Some generation methods already pass only the last input ID
|
139 |
+
if input_ids.shape[1] > past_length:
|
140 |
+
remove_prefix_length = past_length
|
141 |
+
else:
|
142 |
+
# Default to old behavior: keep only final ID
|
143 |
+
remove_prefix_length = input_ids.shape[1] - 1
|
144 |
+
|
145 |
+
input_ids = input_ids[:, remove_prefix_length:]
|
146 |
+
|
147 |
+
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
148 |
+
if inputs_embeds is not None and past_key_values is None:
|
149 |
+
model_inputs = {"inputs_embeds": inputs_embeds}
|
150 |
+
else:
|
151 |
+
model_inputs = {"input_ids": input_ids}
|
152 |
+
|
153 |
+
model_inputs.update(
|
154 |
+
{
|
155 |
+
"past_key_values": past_key_values,
|
156 |
+
"use_cache": kwargs.get("use_cache"),
|
157 |
+
"attention_mask": attention_mask,
|
158 |
+
}
|
159 |
+
)
|
160 |
+
return model_inputs
|
161 |
+
|
162 |
+
@staticmethod
|
163 |
+
def _reorder_cache(past_key_values, beam_idx):
|
164 |
+
reordered_cache = ()
|
165 |
+
for layer_past in past_key_values:
|
166 |
+
reordered_cache += (tuple(past_state.index_select(0, beam_idx) for past_state in layer_past),)
|
167 |
+
return reordered_cache
|
168 |
+
|
169 |
+
@classmethod
|
170 |
+
def from_pretrained(cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], **kwargs):
|
171 |
+
if (
|
172 |
+
os.path.isdir(pretrained_model_name_or_path)
|
173 |
+
and kwargs.get("config", None) is not None
|
174 |
+
and getattr(kwargs["config"], "checkpoint_file", None) is not None
|
175 |
+
):
|
176 |
+
# Setting torch default dtype
|
177 |
+
torch_dtype = getattr(kwargs["config"], "torch_dtype", None)
|
178 |
+
if isinstance(torch_dtype, str):
|
179 |
+
torch_dtype = getattr(torch, torch_dtype)
|
180 |
+
if torch_dtype is not None:
|
181 |
+
torch.set_default_dtype(torch_dtype)
|
182 |
+
|
183 |
+
print("Loading checkpoint from directory")
|
184 |
+
checkpoint_path = kwargs["config"].checkpoint_file
|
185 |
+
checkpoint = torch.load(checkpoint_path)
|
186 |
+
|
187 |
+
state_dict = checkpoint["state_dict"]
|
188 |
+
state_dict = {x.replace("module.", ""): y for x, y in state_dict.items()}
|
189 |
+
state_dict = {f"model.{x}": y for x, y in state_dict.items()}
|
190 |
+
|
191 |
+
return super().from_pretrained(None, state_dict=state_dict, **kwargs)
|
192 |
+
elif os.path.isdir(pretrained_model_name_or_path):
|
193 |
+
# Load from a PyTorch checkpoint
|
194 |
+
print("Loading checkpoint from directory")
|
195 |
+
checkpoint_path = os.path.join(pretrained_model_name_or_path, "pytorch_model.bin")
|
196 |
+
state_dict = torch.load(checkpoint_path)
|
197 |
+
|
198 |
+
# state_dict = {x.replace("module.", ""): y for x, y in state_dict.items()}
|
199 |
+
state_dict = {f"model.{x}" if "model." not in x else x: y for x, y in state_dict.items()}
|
200 |
+
|
201 |
+
return super().from_pretrained(pretrained_model_name_or_path, state_dict=state_dict, **kwargs)
|
202 |
+
else:
|
203 |
+
return super().from_pretrained(pretrained_model_name_or_path, **kwargs)
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:20aa0531af18faedb61cf76f1b4cc6090f0ea4fe45830eb1d91c1198cf7cc475
|
3 |
+
size 11184489866
|
special_tokens_map.json
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<|endoftext|>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"eos_token": {
|
10 |
+
"content": "<|endoftext|>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"unk_token": {
|
17 |
+
"content": "<|endoftext|>",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
}
|
23 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,214 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": false,
|
3 |
+
"add_eos_token": false,
|
4 |
+
"add_prefix_space": false,
|
5 |
+
"added_tokens_decoder": {
|
6 |
+
"0": {
|
7 |
+
"content": "<|endoftext|>",
|
8 |
+
"lstrip": false,
|
9 |
+
"normalized": false,
|
10 |
+
"rstrip": false,
|
11 |
+
"single_word": false,
|
12 |
+
"special": true
|
13 |
+
},
|
14 |
+
"1": {
|
15 |
+
"content": "<|padding|>",
|
16 |
+
"lstrip": false,
|
17 |
+
"normalized": false,
|
18 |
+
"rstrip": false,
|
19 |
+
"single_word": false,
|
20 |
+
"special": true
|
21 |
+
},
|
22 |
+
"50254": {
|
23 |
+
"content": " ",
|
24 |
+
"lstrip": false,
|
25 |
+
"normalized": true,
|
26 |
+
"rstrip": false,
|
27 |
+
"single_word": false,
|
28 |
+
"special": false
|
29 |
+
},
|
30 |
+
"50255": {
|
31 |
+
"content": " ",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": true,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false,
|
36 |
+
"special": false
|
37 |
+
},
|
38 |
+
"50256": {
|
39 |
+
"content": " ",
|
40 |
+
"lstrip": false,
|
41 |
+
"normalized": true,
|
42 |
+
"rstrip": false,
|
43 |
+
"single_word": false,
|
44 |
+
"special": false
|
45 |
+
},
|
46 |
+
"50257": {
|
47 |
+
"content": " ",
|
48 |
+
"lstrip": false,
|
49 |
+
"normalized": true,
|
50 |
+
"rstrip": false,
|
51 |
+
"single_word": false,
|
52 |
+
"special": false
|
53 |
+
},
|
54 |
+
"50258": {
|
55 |
+
"content": " ",
|
56 |
+
"lstrip": false,
|
57 |
+
"normalized": true,
|
58 |
+
"rstrip": false,
|
59 |
+
"single_word": false,
|
60 |
+
"special": false
|
61 |
+
},
|
62 |
+
"50259": {
|
63 |
+
"content": " ",
|
64 |
+
"lstrip": false,
|
65 |
+
"normalized": true,
|
66 |
+
"rstrip": false,
|
67 |
+
"single_word": false,
|
68 |
+
"special": false
|
69 |
+
},
|
70 |
+
"50260": {
|
71 |
+
"content": " ",
|
72 |
+
"lstrip": false,
|
73 |
+
"normalized": true,
|
74 |
+
"rstrip": false,
|
75 |
+
"single_word": false,
|
76 |
+
"special": false
|
77 |
+
},
|
78 |
+
"50261": {
|
79 |
+
"content": " ",
|
80 |
+
"lstrip": false,
|
81 |
+
"normalized": true,
|
82 |
+
"rstrip": false,
|
83 |
+
"single_word": false,
|
84 |
+
"special": false
|
85 |
+
},
|
86 |
+
"50262": {
|
87 |
+
"content": " ",
|
88 |
+
"lstrip": false,
|
89 |
+
"normalized": true,
|
90 |
+
"rstrip": false,
|
91 |
+
"single_word": false,
|
92 |
+
"special": false
|
93 |
+
},
|
94 |
+
"50263": {
|
95 |
+
"content": " ",
|
96 |
+
"lstrip": false,
|
97 |
+
"normalized": true,
|
98 |
+
"rstrip": false,
|
99 |
+
"single_word": false,
|
100 |
+
"special": false
|
101 |
+
},
|
102 |
+
"50264": {
|
103 |
+
"content": " ",
|
104 |
+
"lstrip": false,
|
105 |
+
"normalized": true,
|
106 |
+
"rstrip": false,
|
107 |
+
"single_word": false,
|
108 |
+
"special": false
|
109 |
+
},
|
110 |
+
"50265": {
|
111 |
+
"content": " ",
|
112 |
+
"lstrip": false,
|
113 |
+
"normalized": true,
|
114 |
+
"rstrip": false,
|
115 |
+
"single_word": false,
|
116 |
+
"special": false
|
117 |
+
},
|
118 |
+
"50266": {
|
119 |
+
"content": " ",
|
120 |
+
"lstrip": false,
|
121 |
+
"normalized": true,
|
122 |
+
"rstrip": false,
|
123 |
+
"single_word": false,
|
124 |
+
"special": false
|
125 |
+
},
|
126 |
+
"50267": {
|
127 |
+
"content": " ",
|
128 |
+
"lstrip": false,
|
129 |
+
"normalized": true,
|
130 |
+
"rstrip": false,
|
131 |
+
"single_word": false,
|
132 |
+
"special": false
|
133 |
+
},
|
134 |
+
"50268": {
|
135 |
+
"content": " ",
|
136 |
+
"lstrip": false,
|
137 |
+
"normalized": true,
|
138 |
+
"rstrip": false,
|
139 |
+
"single_word": false,
|
140 |
+
"special": false
|
141 |
+
},
|
142 |
+
"50269": {
|
143 |
+
"content": " ",
|
144 |
+
"lstrip": false,
|
145 |
+
"normalized": true,
|
146 |
+
"rstrip": false,
|
147 |
+
"single_word": false,
|
148 |
+
"special": false
|
149 |
+
},
|
150 |
+
"50270": {
|
151 |
+
"content": " ",
|
152 |
+
"lstrip": false,
|
153 |
+
"normalized": true,
|
154 |
+
"rstrip": false,
|
155 |
+
"single_word": false,
|
156 |
+
"special": false
|
157 |
+
},
|
158 |
+
"50271": {
|
159 |
+
"content": " ",
|
160 |
+
"lstrip": false,
|
161 |
+
"normalized": true,
|
162 |
+
"rstrip": false,
|
163 |
+
"single_word": false,
|
164 |
+
"special": false
|
165 |
+
},
|
166 |
+
"50272": {
|
167 |
+
"content": " ",
|
168 |
+
"lstrip": false,
|
169 |
+
"normalized": true,
|
170 |
+
"rstrip": false,
|
171 |
+
"single_word": false,
|
172 |
+
"special": false
|
173 |
+
},
|
174 |
+
"50273": {
|
175 |
+
"content": " ",
|
176 |
+
"lstrip": false,
|
177 |
+
"normalized": true,
|
178 |
+
"rstrip": false,
|
179 |
+
"single_word": false,
|
180 |
+
"special": false
|
181 |
+
},
|
182 |
+
"50274": {
|
183 |
+
"content": " ",
|
184 |
+
"lstrip": false,
|
185 |
+
"normalized": true,
|
186 |
+
"rstrip": false,
|
187 |
+
"single_word": false,
|
188 |
+
"special": false
|
189 |
+
},
|
190 |
+
"50275": {
|
191 |
+
"content": " ",
|
192 |
+
"lstrip": false,
|
193 |
+
"normalized": true,
|
194 |
+
"rstrip": false,
|
195 |
+
"single_word": false,
|
196 |
+
"special": false
|
197 |
+
},
|
198 |
+
"50276": {
|
199 |
+
"content": " ",
|
200 |
+
"lstrip": false,
|
201 |
+
"normalized": true,
|
202 |
+
"rstrip": false,
|
203 |
+
"single_word": false,
|
204 |
+
"special": false
|
205 |
+
}
|
206 |
+
},
|
207 |
+
"bos_token": "<|endoftext|>",
|
208 |
+
"clean_up_tokenization_spaces": true,
|
209 |
+
"eos_token": "<|endoftext|>",
|
210 |
+
"model_max_length": 1000000000000000019884624838656,
|
211 |
+
"pad_token": null,
|
212 |
+
"tokenizer_class": "GPTNeoXTokenizer",
|
213 |
+
"unk_token": "<|endoftext|>"
|
214 |
+
}
|