Edit model card

beto-clinical-wl-es-ner

This model is a fine-tuned version of plncmm/beto-clinical-wl-es on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3299
  • Precision: 0.8665
  • Recall: 0.9037
  • F1: 0.8847
  • Accuracy: 0.9418

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 280 0.2544 0.8328 0.8489 0.8408 0.9247
0.3847 2.0 560 0.2645 0.8170 0.8667 0.8411 0.9236
0.3847 3.0 840 0.2372 0.8512 0.8726 0.8617 0.9338
0.1056 4.0 1120 0.2749 0.8403 0.8963 0.8674 0.9327
0.1056 5.0 1400 0.2895 0.8557 0.9052 0.8798 0.9354
0.057 6.0 1680 0.2630 0.8707 0.9081 0.8891 0.9408
0.057 7.0 1960 0.2759 0.8614 0.9022 0.8813 0.9418
0.031 8.0 2240 0.3099 0.8689 0.9037 0.8860 0.9408
0.0222 9.0 2520 0.3506 0.8597 0.9081 0.8833 0.9386
0.0222 10.0 2800 0.2962 0.8693 0.8963 0.8826 0.9421
0.0169 11.0 3080 0.3218 0.8709 0.8993 0.8848 0.9432
0.0169 12.0 3360 0.3459 0.8672 0.9096 0.8879 0.9400
0.0134 13.0 3640 0.3299 0.8661 0.9007 0.8831 0.9413
0.0134 14.0 3920 0.3318 0.8707 0.9081 0.8891 0.9429
0.0126 15.0 4200 0.3299 0.8665 0.9037 0.8847 0.9418

Framework versions

  • Transformers 4.41.1
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1
Downloads last month
6
Safetensors
Model size
109M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for manucos/beto-clinical-wl-es-ner

Finetuned
(3)
this model